28 August 2022 to 1 September 2022
Politecnico di Milano - Polo territoriale di Lecco
Europe/Rome timezone

Detection of Magnetospheric Interaction in Magnetic Hot Binary

30 Aug 2022, 09:20
15m
Politecnico di Milano - Polo territoriale di Lecco

Politecnico di Milano - Polo territoriale di Lecco

Politecnico di Milano - Polo territoriale di Lecco Via Previati 1/c – 23900 Lecco, Italy

Speaker

Mr Ayan Biswas (National Centre for Radio Astrophysics)

Description

Although > 6% of isolated massive stars are magnetic, a magnetic field is rarely observed (<1.5%) in the case of close hot binaries. Among them, $\epsilon$ Lupi A is the only close hot binary where both the components are magnetic. The stars have anti-aligned dipoles pointing to interacting magnetic fields, and orbit close enough that their magnetospheres are predicted to overlap, leading to speculation that $\epsilon$ Lupi may exhibit magnetospheric interactions. Although several studies are going on to understand the nature of radio emission from single massive magnetic stars, only a few observations have been performed to study the stars in binary. In this work, we shall report the discovery of radio emission from $\epsilon$ Lupi observed with the upgraded Giant Metrewave Radio Telescope (uGMRT) and the MeerKAT radio telescope. The light curve shows a variable nature with the presence of strong, sharp, linearly polarized pulses near the periastron. This behavior makes $\epsilon$ Lupi the first-ever main-sequence binary to show direct evidence of magnetospheric interaction. We also witness some out-of-periastron spikes in the light curve that we try to explain by considering different phenomena: electron cyclotron maser emission, multi-polar interaction, or magnetic reconnection due to the relative motion of the magnetospheres of the components. We also observe a possible periodic variability of timescale much smaller than the orbital period in the light curve that might indicate the yet-unknown rotational period of one or both contributing stars. This complex system serves as a test-bed for different exotic physical processes that may arise in other magnetically interacting systems like star-star, planet-star, and moon-planet. We anticipate our work to be a starting point for a more detailed variability study.

Primary author

Mr Ayan Biswas (National Centre for Radio Astrophysics)

Co-authors

Barnali Das (University of Delaware) Mrs Poonam Chandra (National Radio Astronomy Observatory) Gregg Wade (Royal Military College of Canada) Mr Shultz Matthew E. (University of Delaware) Francesco Cavallaro (Istituto Nazionale di Astrofisica (INAF))

Presentation materials

There are no materials yet.