2–6 Sept 2024
Università di Milano "La Statale"
Europe/Rome timezone

Machine learning enhancements for Cherenkov telescope data analysis

INSTR/SW
4 Sept 2024, 08:25
1m
Poster Poster hang

Speaker

Ambra Di Piano (Istituto Nazionale di Astrofisica (INAF))

Description

We developed deep learning enhancements for the real-time analysis of Cherenkov telescopes data, applicable to the context of the Cherenkov Telescope Array Observatory (CTAO). The CTAO will have a Science Alert Generation (SAG) system tasked with real-time reconstruction and analysis of data, as part of the Array Control and Data Acquisition (ACADA) system. We developed two applications of Convolutional Neural Network (CNN) based models, trained offline on 20k simulations and applicable for online inference. The first model is an auto-encoder trained to learn and subtract the background level of a given observation. The second model computes a 2-dimensional regression to identify candidate sources in the field of view. We compared results with standard techniques and found that our models achieve comparable accuracy without relying on a priori assumptions such as candidate coordinates, background model or instrument response function.

Primary author

Ambra Di Piano (Istituto Nazionale di Astrofisica (INAF))

Co-authors

Andrea Bulgarelli (Istituto Nazionale di Astrofisica (INAF)) Daniele Gregori (E4 computer engineering SpA) Domenico Beneventano (Università di Modena e Reggio Emiglia; INAF/OAS Bologna) Elisabetta Boella (E4 computer engineering SpA) Gabriele Panebianco (Istituto Nazionale di Astrofisica (INAF)) Luca Castaldini (INAF/OAS Bologna) Mattia Paladino (E4 computer engineering SpA) Dr Nicolo' Parmiggiani (Istituto Nazionale di Astrofisica (INAF)) Riccardo Falco (INAF/OAS Bologna) Dr Valentina Fioretti (Istituto Nazionale di Astrofisica (INAF))

Presentation materials