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Fig. 1 – Pipeline workflow: original maps are denoised by a CNN auto-encoder that 
subtracts the background, then a CNN 2d-regressor localises the candidate source.

IMAGE DENOISING
We developed a CNN auto-encoder for denoising counts maps, trained 
using "noisy" and "cleaned" datasets made of raw and 
background-subtracted normalised counts maps, respectively. Each of the 
training and validation datasets have 16k and 4k samples in both sets. We 
use a combination of convolutional 2D layers and average pooling to 
encode the images, and a combination of convolutional 2D layers and 
up-sampling for decoding. We use a ReLU activation function in all 
convolutional layers except the last one, where we use a Sigmoid 
activation function instead. Finally, we compile the model with the Adam 
optimiser and the binary cross-entropy loss function.
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ABSTRACT
We developed two applications of Convolutional Neural Network CNN) based models to 
enhance the real time scientific analysis of Cherenkov telescopes, in the context of the real 
time analysis of the Cherenkov Telescope Array Observatory CTAO. The first model is an 
auto-encoder trained to denoise counts map by removing the background. The second 
model is a 2-dimensional regression trained to identify candidate sources in the field of 
view. Both models achieve results comparable to standard techniques without requiring a 
priori assumptions on candidate coordinates, background model or instrument response 
function which are extremely hard to constrain during real time. This work is part of the 
continuous research and development activity for improvements of future versions of the 
ACADA/SAG product.
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INTRODUCTION
One of the many challenges of real time analysis is the background 
estimation, especially when searching for unknown candidate sources. 
We developed two CNN-based deep learning models, that can be used 
for online inference without a priori knowledge on the background model 
Fig. 1. These tools are intended to enhance standard detection 
techniques when real time circumstances may otherwise hinder their 
application.  We used ctools v2.0 1 for simulations, gammapy v1.0 2 
for standard analysis using ACADA/SAG v1.0 as reference 3,4. Finally 
we used tensorflow v2.11 5 for deep learning models.  

CANDIDATE LOCALISATION
The second model is a CNN 2D-regressor tasked with hotspots 
localisation. Its inputs are normalised and denoised counts maps with 
relative normalised labels that identify the simulated target source.  The 
sizes of training and test datasets are 16k and 4k maps each. We use an 
initial dual layer of 2D convolution and max pooling, followed by 4 
consequent 2D convolutions and another max pooling.  Then we apply 
a dropout layer of 20% and flatten our data before a 10k dense 
layer.  Lastly, we apply another 20% dropout layer before the final dense 
layer. We use a ReLU activation function for all except the final layer, 
where we use a Sigmoid. We compile the model with the Adam 
optimiser and a mean absolute error loss function. 

RESULTS
We trained both models 6 using randomly selected IRFs of 4LST from 
the publicly available dataset (prod5-v1.0 7 and compare with the 
gammapy analysis for the ACADA/SAG, as part of the continuous 
research and development for its future improvement. 

● We compute difference between the CNN excess and photometric 
excess Fig. 2, left).  We obtain a mean of 𝜇 ≈ 2 (± 8 at 1𝜎) counts 
for the random zenith angle dataset and 𝜇 ≈ 0 (± 13 at 1𝜎) counts for 
the 20° zenith angle dataset, where if both methods were to 
behave perfectly identical we would have 𝜇 = 0 and 𝜎 ≈ 0.

● We compute the angular separation (𝜗) between the simulated and 
the found coordinates, comparing the gammapy and CNN methods 
Fig. 2, right). On a random zenith angle dataset we obtain a 68% 
containment radius of about 𝜗  ≈ 0.04  0.004° for gammapy, and 
of about 𝜗  ≈ 0.07  0.004° for the CNN, respectively.

● We find that the two methods achieve comparable results, with the 
CNN having the advantage of not requiring any a priori 
assumptions on target, background or IRFs.

Fig. 2 – (Left) Difference between photometric excess and CNN excess for random 
and 20° zenith angle datasets. (Right) Localisation error comparison between 
gammapy’s peak-search algorithm  and CNN for random zenith angle datasets.
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