Conveners
Plenary 2
- Laurene Jouve (IRAP Toulouse / France)
The chromosphere is a very dynamic and complex layer where all the relevant physical processes happen on very small spatio-temporal scales. A few spectral lines that can be used as chromospheric diagnostics, give us convoluted information that is hard to interpret without realistic theoretical models. What are the key ingredients that these models need to contain? It is clear that what shapes...
Observations of the Sun reveal a rich array of dynamics throughout all levels of the solar atmosphere. In many cases. the observed dynamic motions are driven by the magnetic field. However, the lower solar atmosphere, i.e. the photosphere and chromosphere, is a partially ionised plasma, with most of the species being neutral. This means that the driver of the fluid motions cannot directly...
How mass is loaded into the upper chromosphere and transition region is an important unclosed matter. The standard fibrilar mass loading scenario is of feeding material up relatively static fieldlines by the guiding magnetic field, resulting from initial impulses made by p-mode oscillations (Hansteen et al 2006, De Pontieu et al 2007). Instrumentation such as DKIST and EST will provide an...
Atmospheric models place the Chromosphere-Corona Transition Region at $\sim2$Mm above the $\tau_{5000}=1$ level. Os course, the upper part of the chromosphere is highly inhomogeneous, with spicules intruding into the corona. There is, however, a more homogeneous lower region, as evidenced in the MgII triplet lines, extending to $\sim2$Mm (Alissandrakis etal.;...
The Solar Orbiter mission of ESA and NASA is currently on a trajectory that will take it into the inner heliosphere from where it will explore the Sun (and heliosphere) from close up and from out of the ecliptic plane. It aims to address the overarching questions of how the Sun creates and controls the heliosphere, and why solar activity changes with time. Among the instruments that Solar...