Conveners
Session V. Teleportation, entanglement and decoherence
- Lorenzo Maccone
Session V. Teleportation, entanglement and decoherence: Morning session
- Marco Genovese (INRIM)
Session V. Teleportation, entanglement and decoherence: Afternoon session
- Marco Genovese (INRIM)
In my talk I will review the idea of pseudo-density matrices (PDMs), which are states of physical systems "stretching across" time. They arise by treating different instances of time as different Hilbert spaces connected by the usual tensor product structure that is normally used for spatial modes (i.e., different instances of time become different modes in this formulation). I will then talk...
I will present a general theorem stating that if one can extract diffrent amounts of work deterministically from from a system prepared in any one of a set of states, then those states must be perfectly distinguishable from one another. This result is formulated independently of scale and of particular dynamical laws; it also provides a novel connection between thermodynamics and information...
Numerical solutions of the Dirac equation show that, post-selected for tunneling, relativistic electrons can exhibit transit time distributions with a peak corresponding to superluminal effective velocity. However, a non-negligible effect is seen only when tunneling probability is very small. If one attempts to send a signal using many electrons to compensate for the low tunneling...
Recently, we have experimentally proved that the noise limit for GINGERINO, a running large frame ring laser gyroscope installed inside the Gran Sasso National Laboratory, contradicts the shot-noise limit so far predicted for this class of instruments. Starting from a review on the measurement principles of a Sagnac RLG, we present this result and discuss a possible novel theoretical approach...
In this talk I will use the Page-Wootters "timeless" framework for analyzing dynamics from the perspective of inertial and non-inertial quantum clocks. I will derive a new time-energy uncertainty relation indicating that the duration of an energy measurement carried out by an external system cannot be performed arbitrarily fast from the perspective of the internal clock [1]. In addition, when...
A general entanglement-based witness of non-classicality has recently been proposed, which can be applied to testing quantum effects in gravity. This witness is based on generating entanglement between two quantum probes via a mediator. We provide a "temporal" variant of this witness, using a single quantum probe to assess the non-classicality of the mediator. Within the formalism of quantum...
We demonstrate that a matter field with proper time oscillations has the properties of a quantum field. The particles observed are oscillators propagating back and forth in time. We also find that the internal time of the field is self-adjoint. The proper time oscillation of an observed particle satisfies an uncertainty relation analogous to that between spatial position and momentum. To test...
The perspective-dependence of position and momentum uncertainties and their
correlations are studied in the framework of nonrelativistic spatiotemporal quantum
frames of reference [M. Suleymanov, I.L. Paiva, E. Cohen, Nonrelativistic
spatiotemporal quantum reference frames, Phys. Rev. A 109, 032205 (2024)]. One
of the results [M. Suleymanov, A. Carmi, E. Cohen, Uncertainties and...
We quantify the difference between classical and quantum counterfactual effects, where an output distribution is somehow changed by the removal of signal (``blocking'') at some point. We show that there is a counterfactual gain in quantum counterfactual communication, which quantifies the effect it has above and beyond any classical counterfactual effect, and that this counterfactual gain...
In contemporary physics, there is a quest to unite quantum theory and general relativity. Recently, there has been discussion about using the observation of gravity-induced entanglement to demonstrate the quantum nature of gravity. While some experimental proposals have been in this direction, the extreme technological requirements make their implementation quite challenging. We present a...