Conveners
Poster Session 4.5
- Emilia Kilpua (University of Helsinki)
An automatic algorithm has been used for detection of flares in the GOES data in the period 1986-2020. The detection process starts from soft-X solar signal, provided by the NASA-GOES Satellite Network which is devoted to the surveillance of the Earth. Since flares represent one of the main events associated with Space Weather their statistics are of particular importance in this context.
The...
We conducted a statistical analysis of the dimming events associated with Earth-directed coronal mass ejections (CMEs) that were observed in quasi-quadrature by the SDO and STEREO satellites. We derived the properties of the dimmings as observed above the limb by STEREO EUVI and compared them with the mass and speed of the associated CMEs. The unique satellite constellation allowed us to...
Since the beginning of this century it became possible to make observations of solar flares in subterahertz (sub-THz) frequency range at a few frequencies in the range of 100-400 GHz. Within these observations some of M- and X-class solar events had a spectral (sub-THz) component that grew with frequency. To understand the origin of this phenomenon, we simulated the plasma density and...
The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Undergoing wave-particle interactions with Langmuir waves, these beams are the driver for type III radio bursts, the brightest radio bursts produced by the Sun. The formation and motion of type III fine frequency structures is a puzzle but is commonly believed to...
We present a comprehensive multi-wavelength analysis of a coronal mass ejection (CME) associated with a M3.2 flare and filaments eruption on 8 January 2014 from the active region NOAA 11947. Observations from the AIA 171 A images reveal the origin of pre-CME arcade $\approx$ 1 hr prior to the eruptive events. After formation, the pre-CME arcade undergo through slow rise evolution with a speed...
The soft X-ray photometric records from the GOES/XRS instruments
now approach a half century of coverage, and constitute the most
complete space-based proxy for solar flare X-ray luminosities and
energies. Observations continue with the GOES-16 and -17 and
forthcoming satellites, which use a slightly different detector
technology. Some of the most powerful earlier events saturated...
Solar flares and coronal mass ejections (CME) are the most powerful manifestations of solar activity. Both phenomena associated with the evolution of the spatial structure of the magnetic field of active regions (AR). It is known that not all powerful flares accompanied by CME. In some cases, CME are observed, associated with very low intensity bursts. At the same time the observational signs...