Conveners
Poster Session 9.2
- D. Shaun Bloomfield (Northumbria University)
There are two types of active region loops in the solar corona: warm loops with temperatures of about 1 MK (Ugarte-Urra et al. 2009) and hot ones with temperatures above 2 MK (Brooks et al. 2008). There are convincing evidence suggesting that the heating mechanism of the "warm loops" is by storms of nanoflares (Warren et al. 2003; Klimchuk 2006, 2009; Ugarte-Urra et al. 2009). However, for...
We investigate abundance variations of heavy ions in coronal loops. We develop and exploit a multi-species model of the solar atmosphere (called IRAP’s Solar Atmospheric Model: ISAM) that solves for the transport of neutral and charged particles from the chromosphere to the corona. We investigate the effect of different mechanisms that could produce the First Ionization Potential (FIP) effect....
We present our measurements of the tilt of the magnetic-field (MF) axis of sunspots, based on observations of the Sun with microwaves. In contrast to the methods that use the coordinates of the maximum brightness of radio sources located above the sunspots, the new method proposed by us uses measurements of its brightness dynamics. The method is based on a distinctive feature of the...
Coronal bright points (CBPs) are prominent features of the corona in the quiet-Sun and coronal holes, best observed in extreme-ultraviolet (EUV) and X-ray wavelengths, with lifetimes of up to several hours. They appear as small loops of sizes of about 10-20 Mm connected to bipolar magnetic field concentrations in the photosphere, often associated with flux emergence and cancellation. They can...
We investigate slow magneto-acoustic waves that are naturally excited by turbulent convection and investigate their role in the energy balance of a plage region using three dimensional (3D) radiation-MHD simulations. We track 25 magnetic field lines both in space and time inside a strong magnetic element and calculate velocity component parallel to the background field and compute the temporal...
In the near future, the Parker Solar Probe will put theories about the dynamics and nature of the transition between the solar corona and the solar wind to stringent tests. The most popular mechanism aimed to explain the dynamics of the nascent solar wind, including its heating and acceleration, is magnetohydrodynamic (MHD) turbulence. Most of the previous models focused on nonlinear cascade...