Conveners
Day 3: Day 3
- Eline Tolstoy (Kapteyn, Groningen)
The Gaia-ESO Survey is a very ambitious project to obtain high-quality spectra of 100,000 stars, representing the major stellar populations, from young open star clusters to the oldest field stars, O-stars to M-stars. Gaia-ESO used the VLT GIRAFFE facility, allowing both good signal-noise spectra and also sampling beyond the immediate Solar neighbourhood for unevolved stars. Key features...
The GALAH survey is a large Australian-led project with a goal to measure radial velocities and ~30 elemental abundances in 1 million stars. Using the HERMES spectrograph at the AAT, GALAH has now observed 750,000 unique stars across three affiliated surveys including the main archaeology program, and associated science arising from the K2GAP and TESS surveys. The advent of Gaia has proved a...
Gaia benchmark stars are selected to be calibration stars for different spectroscopic surveys. Very high-quality and homogeneous spectroscopic data for these stars are therefore required. We used ultrahigh- and high-resolution spectra obtained with the ESPRESSO, PEPSI, and HARPS spectrographs to measure spectral line characteristics and determined stellar parameters and abundances for these...
4MOST is a spectroscopic survey facility that will be placed on the Vista telescope on Paranal in Chile. It will be able to simultaneously obtain spectra for about 2400 objects, 800 at a resolution of about R~20000, and 1600 at a resolution of about R~5000. I will give a brief overview of the 4MOST science cases and give a few possible examples where follow-up observations with a...
In this talk, I will present a comprehensive catalog (Survey of Surveys, SoS) to meaningfully merge the main parameters of the largest ground-based spectroscopic surveys to date (RAVE, APOGEE, GALAH, Gaia-ESO, and LAMOST) using Gaia astrometry as reference. The main steps for the compilation of SoS include i) the cross-match algorithm (XM) between Gaia and the spectroscopic surveys, ii) the...
The holy grail of Galactic Archaeology is the constrain the physical processes responsible for of the formation, evolution and assembly of Milky Way-like galaxies. With current technology, the best way to do this is to use the Milky Way as a laboratory to answer questions of galaxy formation using the detailed spatial, kinematic, and chemical information for its billions of stars. In this...
Our ability to detect planets around stars with the radial-velocity (RV) method has a strong dependence on our understanding on the stellar jitter of such stars which can reach dozens of m/s in red giants. This intrinsic RV variability can be caused by stellar magnetic activity, pulsations or granulation and it behaves on a different way depending on the spectral type of the stars and on their...