Our views of the solar chromosphere, transition region, and corona are rapidly changing with the advent of increasingly advanced numerical simulations of the dominant physical processes in the coupled solar atmosphere and the availability of high-resolution observations from both ground-based (e.g., SST, DKIST) and space-based telescopes (e.g., IRIS, Solar Orbiter/EUI).To gain a deeper understanding of which physical processes dominate the dynamics and heating in the solar atmosphere, and in order to further develop and advance our numerical models, it is key to confront the models with high-resolution observations by focusing on existing discrepancies between observed and synthetic spectra.This workshop will be focused on such a critical comparison by providing an overview of the most recent observational results and models. The meeting featured discussions on the missing physics in current models and the most promising approaches to increase the realism of current simulations, with an eye towards current missions like IRIS and future missions such as MUSE and EUVST, which will be launched later this decade.
Choose timezone
Your profile timezone: