Conveners
Session 4
- Petr Heinzel (Astronomical Institute of the Czech Academy of Sciences, Ondˇrejov, Czech Republic)
At a general level, the goal of this talk is to outline possible computational approaches for the integration of data recorded by different Solar Orbiter instruments and for a multi-modal extraction information contained in these measurements. At a more technical level, this contribution will propose a possible AI-based pipeline for the identification of correlations between the signatures of...
The Solar Orbiter Metis coronagraph captures images of the solar corona in both visible (VL) and ultraviolet (UV) light. Tracks ascribable to the passage of galactic and solar particles appear in the Metis images. An algorithm implemented in the Metis processing electronics allows us
to separate the pixels fired by VL photons from those crossed by high-energy particles. The Metis particle...
The launch of Solar Orbiter allows us to study the solar corona at closer distances and from different perspectives, which helps us gain significant insights regarding the open question in solar physics concerning the origin of solar wind. In this work, we present an analysis of solar wind outflows from two locations: the S-web magnetic topology between two solar filaments, and the boundary of...
This study presents observations of a solar eruption captured by the Metis coronagraph on October 12, 2022. Utilizing total brightness data with normalized running differences, we measured the inclination of helicoidal structures, revealing a notable trend: as the polar angle increases, the inclination decreases.
Further analysis, including the examination of EUI images, reveals evidence of...
Parker Solar Probe (PSP; launched in 2018) and Solar Orbiter (SoLO; launched in 2020) observe the Sun from unprecedented close-in and out-of-ecliptic orbits. This unique and high-resolution data give us new insights about the initiation and early evolution of coronal mass ejections (CMEs) in the inner heliosphere. We investigate the morphology and propagation behavior of distinct small-scale...
The combination of the H I Ly$\alpha$ (121.6 nm) line formation mechanism with white-light and ultraviolet (UV) Ly$\alpha$ observations provides an effective method for determining the electron temperature of coronal mass ejections (CMEs). A key to ensuring the accuracy of this diagnostic technique is the precise calculation of theoretical Ly$\alpha$ intensities. This study performs a modelled...