We will show two fundamental applications of quantum superpositions of spatially separated states of mesoscopic objects (nano- and micro-spheres). Firstly we are going to show how convenient it may be to prepare and probe such superpositions through a pure ancillary system such as a spin. Next, we are going to show how an entanglement between two such interferometers can be generated purely...

I will first review the timeless Page-Wootters picture of the quantum universe in which there is no overall dynamics, but where the states of quantum fields evolve relative to the quantum states of the underlying space. I will then introduce the concept of superposing different causal orders – a notion that could be naturally motivated within some approaches to quantum gravity – and ask if and...

## Introduction

The current description of SpaceTime follows Quantum Mechanics principles at the smallest scales, while it is commonly associated to General Relativity in cosmological terms. The opposite perspectives eventually differ in terms of discrete *versus* continuum analysis.

Time seems *vanishing* in the latest formulations of Quantum theories (Loop Quantum Gravity), as a...

I will expose a local, fully quantum-field-theory compliant model of the Aharonov-Bohm effect, where the Aharonov-Bohm phase is gradually and locally acquired. I will explore the theoretical and experimental implications of this model, especially in regard to locality and causality in quantum theory.

Quantum optical systems present several interesting properties that allow using them as a tool for visualizing physical phenomena otherwise subject of theoretical speculation only, as Bose Einstein condensation for Hawking radiation [1] or Page Wootters model [2-5].

Closed Time-like Curves (CTC), one of the most striking predictions of general relativity, are notorious for generating...

Title: Contrary Inferences for Classical Histories in the Consistent Histories Approach

The non-relativistic quantum theory is one of the most successful theories in the history of science, since it has been verified experimentally in several different situations and with extremely high precision. Despite the fact that its mathematical formalism is universally accepted, its conceptual...

What allowed Einstein to transcend Newton’s conception of absolute time was his insistence on an operational definition of time in terms of the measure- ment of a clock. Quantum theory has yet to be liberated from this absolute time as evidenced by the Schr ̈odinger equation in which time appears as an external classical parameter.

In this talk I will introduce an operational formulation of...

We study quantum gravity induced quantum causal structure in the context of quantum field theories. We argue both conceptually and numerically that when spacetime is treated quantumly, (1) exact microcausality condition, (2) exact causal boundaries, and (3) the distinction between particles and antiparticles cannot be maintained. These suggest possibilities of "time travel" and "tunneling out...