

2D distributions of stratospheric and upper tropospheric trace gases in the Arctic summer measured during the first flight of the GLORIA balloon instrument

Gerald Wetzel¹, Michael Höpfner¹, Jörn Ungermann², Tom Neubert³, Felix Friedl-Vallon¹, Thomas Gulde¹, Sören Johansson¹, Anne Kleinert¹, Erik Kretschmer¹, Guido Maucher¹, Hans Nordmeyer¹, Christof Piesch¹, Peter Preusse², and Johannes Laube²

1: Institute of Meteorology and Climate Research - Atmospheric Trace Gases and Remote Sensing (IMK-ASF), Karlsruhe Institute of Technology, Karlsruhe, Germany 2: Institute of Energy and Climate Research - Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany

3: Central Institute of Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich, Jülich, Germany

Mid-IR limb emission spectroscopy

- View through the atmosphere against cold space
 - Measurement of thermal atmospheric emission
 - Independent of a source like sun or moon
 - High sensitivity due to long path through the atmosphere
- Different tangent altitudes
 - High vertical resolution
- FTIR spectroscopy
 - Separate rotational-vibrational spectral signatures of many trace gases

Gerald Wetzel et al.

From limb-scanning MIPAS instruments ...

Gerald Wetzel et al.

MIPAS-B highlights examples ...

Validation of MIPAS ESA operational products

For details, see MIPAS product quality readme file, available at: https://earth.esa.int/eogateway/documents/20142/37627/README_V8_issue_1.0_20201221.pdf

Gerald Wetzel et al.

MIPAS-B highlights examples ...

Nitrogen partitioning and budget

First flight of MIPAS-B2 instrument

Kiruna, 11 Feb. 1995 (02:00 - 04:38 UTC,~64°N, ~30°E, Seq. 03a - 06)

Fig. 1. (A) Arctic NO_{v} profiles in mid-February 1995. Symbols: squares, balloon-borne MIPAS-B observations (12); dots, aircraft-borne observations (16). Solid symbols are NO_{ν} measurements; open symbols mark NO^{*}_v deduced from MIPAS N2O measurements (13). NO_v^* represents the unperturbed case (without denitrification). The model calculations are denoted by lines [dotted line, mid-latitude reference NO_v profile (28); dashed line, scenario 0 with subsidence of air only (no particle sedimentation); red line, scenario 3 showing the effect of denitrification due to sedimenting ice and NAT particles]. (B) Vertical redistribution of NO_v (red) and H_2O (blue). In addition, measured $\Delta NO_{,i}$ is shown (�).

3D microphysical model: 2.5° x 2.5° x 100 m (alt.) ECMWF meteorological data

(Waibel et al., Science, 1999)

MIPAS-B highlights examples ...

Chlorine partitioning and budget

Kiruna, 31 Mar. 2011 (02:00 - 04:38 UTC,~64°N, ~30°E, Seq. 03a - 06)

$$\begin{split} & [\textbf{CIO}_{\textbf{x}}] = [\textbf{CIO}] + [\textbf{HOCI}] + 2 [\textbf{CIOOCI}] \\ & [\textbf{CI}_{\textbf{y}}] = [\textbf{CIO}_{\textbf{x}}] + [\textbf{HCI}] + [\textbf{CIONO}_2] \\ & [\textbf{CCI}_{\textbf{y}}] = 2 [\textbf{CFC-12}] + 3 [\textbf{CFC-11}] + [\textbf{HCFC-22}] \\ & + 3 [\textbf{CFC-113}] + 4 [\textbf{CCI}_4] + [\textbf{CH}_3\textbf{CI}] \\ & [\textbf{CI}_{total}] = [\textbf{CI}_{\textbf{y}}] + [\textbf{CCI}_{\textbf{y}}] \\ & [\textbf{CI}_{\textbf{y}^*}] = 3.2008346 + 8.7786479 \times 10^{-6} [\textbf{N}_2\textbf{O}] \\ & - 2.9132361 \times 10^{-5} [\textbf{N}_2\textbf{O}]^2 \\ & (\text{from BONBON balloon observations in 2009 - 2011;} \\ & \text{as described in Engel et al., JGR, 2002)} \end{split}$$

CIOOCI calculated via:

 $[CIOOCI_{calc}] = ([CIO_{max}] - [CIO])/2$ where $[CIO_{max}] = [CIO_{noon}] + 2 [CIOOCI_{noon}]$ (see Wetzel et. al., ACP, 2012)

- First total chlorine partitioning observed by MIPAS-B and TELIS (TErahertz and submillimeter LImb Sounder).
- Strongest Cl_{total} and Cl_y peaks correlate with HCl and ClONO₂.
- Cl_{total} (meas.): 3.41 ± 0.30 ppbv (> 24 km).

HEMERA-WS, Rome, 4-6 June 2022

Karlsruhe Institute of Technology

(Wetzel et al., ACP, 2015)

shaded region: minor chlorine species contained in EMAC (Cl₂, Cl, OCIO, CH₃CCl₃) not measured.

MIPAS-B highlights examples

BrONO₂ diurnal variation and total bromine

Sunset observation: Timmins (Canada), 7 Sep. 2014, Seq. 02a-05b, zobs ~ 32-36 km, Lat. ~ 46°N, Lon. ~81°W

Sunrise observation: Kiruna (Sweden), 31 Mar. 2011, Seq. 03a-06, zobs ~ 35 km, Lat. ~ 64°N, Lon. ~30°E

MIPAS-B Br_v (night, SZA \geq 96°)

Karlsruhe Institute of Technology

Estimation of total bromine

Br_v (23-29 km): 21.6 ± 2.2 pptv

(Wetzel et al., ACP, 2017)

HEMERA-WS, Rome, 4-6 June 2022

Gerald Wetzel et al.

Institute of Meteorology and Climate Research

MIPAS-B Mid-latitude Summer, zobs = 40 km, zmin = 20 km

Wavenumber (cm

814

... to limb-imaging GLORIA instruments

Imaging spectrometer obtain a spectrally resolved picture of the limb at once without the need to scan through the atmosphere

Gerald Wetzel et al.

Institute of Meteorology and Climate Research

GLORIA@StratoBalloon ~36 km

Maiden flight during EU-project HEMERA from Esrange/N-Sweden on 21 Aug 2021

GLORIA@Geophysica ~20 km

GLORIA@HALO ~14 km

HEMERA-WS, Rome, 4-6 June 2022

Gerald Wetzel et al.

Institute of Meteorology and Climate Research

9

GLORIA-B tangent point position

GLORIA-B measurements in comparison to ozonesonde and AirCore in-situ observations

HEMERA-WS, Rome, 4-6 June 2022

11

Gerald Wetzel et al.

Institute of Meteorology and Climate Research

HELMHOLTZ

SKIT

JÜLICH

Investigation of diurnal cycle of many trace gases involved in ozone chemistry

Investigation of pollution in the upper troposphere and stratosphere

Pollutant species (e.g. peroxyacetyl nitrate, PAN) from forest fires or export from the Asian monsoon

 PAN has a long lifetime of up to 5 months in the upper troposphere, it can be transported over far distances.

HEMERA-WS, Rome, 4-6 June 2022

FIRMS fire counts 16-22 Aug. 2021

Investigation of pollution in the upper troposphere and lowermost stratosphere

HALO aircraft measurements over the British Isles during WISE campaign on 13 Sep. 2017 (flight from Oberpfaffenhofen, Germany)

- Main sources of pollutant species are forest fires in N-America and anthropogenic pollution in S- and SE-Asia uplifted and moved within the Asian monsoon anticyclone.
- Pollutants are transported by strong tropospheric winds over large distances, depending on their particular atmospheric lifetime of up to months.

HEMERA-WS, Rome, 4-6 June 2022

Gerald Wetzel et al.

Institute of Meteorology and Climate Research

Investigation of pollution in the upper troposphere

HALO aircraft measurements over the Tropical Atlantic during SouthTRAC campaign on 7 Oct. 2019 (flight from Buenos Aires, Argentina, to Sal, Cabo Verde).

Comparison to Copernicus Atmosphere Monitoring Service (CAMS) atmospheric chemistry model for data assimilation

- Differences between GLORIA and CAMS are small in the case of PAN.
- Poorer agreement for other species seems to be most likely linked to model deficiencies in the representation of loss processes and emission strength.

HEMERA-WS, Rome, 4-6 June 2022

Gerald Wetzel et al.

Institute of Meteorology and Climate Research

Summary

- Maiden flight of limb-emission FTIR imager GLORIA on a stratospheric balloon: HEMERA-2 flight during the KLIMAT campaign, Esrange/Sweden on 21/22 Aug 2021
- Very successful measurements
- Validation:
 - First comparisons with in-situ data of ozone sounding and AirCore
 - Further: HEMERA-1 & SuperCLIMAT flights (CH₄, SF₆, CFC's, ...), Satellite MLS/Aura (O₃, N₂O, H₂O, ...)

Science:

16

- Covering sun-set and sun-rise: photochemistry
- Pollution in the UTLS
- Dynamics, age of air
- **Upcoming:** Strato Science 2022 campaign, Timmins/Canada, Aug. 2022
- GLORIA is a demonstrator for ESA's 11th Earth Explorer mission candidate CAIRT (currently in selection process)

Acknowledgements

- We acknowledge the funding by the HEMERA European Union research infrastructure (Grant Agreement 730970).
- Many thanks to the CNES balloon team for all of their support with logistics, the gondola/payload and the balloon operation and to the SSC (Swedish Space Corporation).

*Changing-Atmosphere Infra-Red Tomography Explorer

