

FERGUSSON : FAIR Environmental Research data Gathering in Upper tropoSphere and lower Stratosphere through innovative ObservatioNs

<u>MÉLANIE GHYSELS-DUBOIS¹</u>, FRANÇOIS VACHER², FELIX FRIEDL-VALLON³, PETER PREUSSE⁴, FRANCESCO CAIRO⁵, BIANCA M. DINELLI⁵, FRANCESCO D'AMATO⁶, SÉBASTIEN PAYAN⁷, AURÉLIEN BOURDON⁸, VALÉRY CATOIRE⁹, MICHEL CHARTIER⁹, GISÈLE KRYSTOFIAK⁹, WEIDONG CHEN¹⁰, GEORGES DURRY¹, NADIR AMAROUCHE¹¹

(1) GSMA, UMR CNRS 7331, Université de Reims, FRANCE
(2) Centre National d'Etudes Spatiales Toulouse, FRANCE
(3) Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, GERMANY
(4) Forschungszentrum Juelich GmbH, Juelich, GERMANY
(5) CNR-ISAC, Roma, ITALY
(6) CNR-INO, Sesto Fiorentino, ITALY
(7) LATMOS, CNRS, Sorbonne Université, Université de Versailles-Saint-Quentin-en-Yvelines, Paris, France

(8) CNRS SAFIRE, Aéroport de Toulouse Francazal, Cugnaux-France, FRANCE
(9) LPC2E/CNRS, UMR 7328, Orléans, FRANCE
(10) Laboratoire de PhysicoChimie de l'Atmosphère, Université du Littoral Côte d'Opale, Dunkerque, FRANCE
(11) DT-INSU, CNRS, Meudon, FRANCE

NEOVIA INNOVATION

Institutes / laboratories

Research infrastructures

EUFR

FERGUSSON : FAIR Environmental Research data Gathering in Upper tropoSphere and lower Stratosphere through innovative ObservatioNs

Mélanie Ghysels-Dubois¹, François Vacher², Felix Friedl-Vallon³, Peter Preusse⁴, Francesco Cairo⁵, BIANCA M. DINELLI⁵, FRANCESCO D'AMATO⁶, SÉBASTIEN PAYAN⁷, AURÉLIEN BOURDON⁸, VALÉRY CATOIRE⁹, MICHEL CHARTIER⁹, GISÈLE KRYSTOFIAK⁹, WEIDONG CHEN¹⁰, GEORGES DURRY¹, NADIR AMAROUCHE¹¹

(1) GSMA, UMR CNRS 7331, Université de Reims, FRANCE (2) Centre National d'Etudes Spatiales Toulouse, FRANCE (3) Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, GERMANY (4) Forschungszentrum Juelich GmbH, Juelich, GERMANY (5) CNR-ISAC, Roma, ITALY (6) CNR-INO. Sesto Fiorentino. ITALY (7) LATMOS, CNRS, Sorbonne Université, Université de Versailles-Saint-Quentin-en-Yvelines, Paris, France (8) CNRS SAFIRE, Aéroport de Toulouse Francazal, Cugnaux-France, FRANCE (9) LPC2E/CNRS, UMR 7328, Orléans, FRANCE (10) Laboratoire de PhysicoChimie de l'Atmosphère. Université du Littoral Côte d'Opale. Dunkeraue, FRANCE

(11) DT-INSU, CNRS, Meudon, FRANCE

Air Spac NEOVIA NNOVATION

Companies

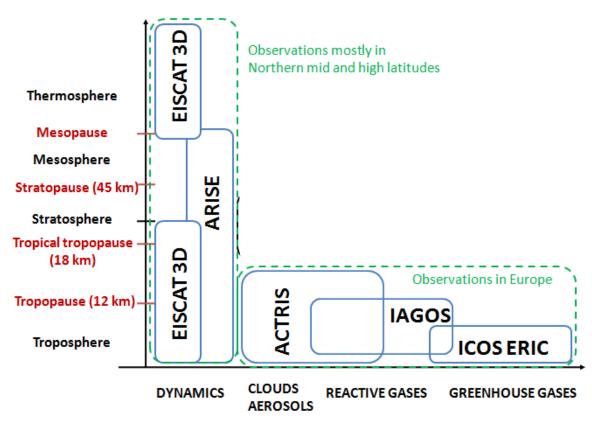
ERIS

Agencies

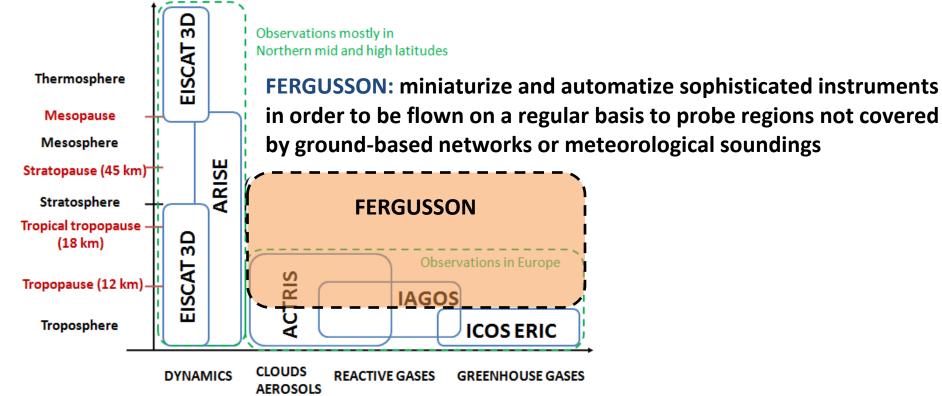
Context

In-situ observations of the stratosphere are rare. Comprehensive datasets are currently taken in dedicated aircraft and balloon campaigns =>limited to target regions and limited in frequency

Stratospheric data come from satellite


In situ data come from radiosondes (not reliable for humidity) or ground-based observations at insufficient resolution

However, in situ data are essential to:


- Feed climate reanalyses
- Calibrate and validate satellite meas.
- Evaluate and improve climate models

Stratosphere is hard to reach, only accessible high altitude aircrafts in high latitudes or with balloons

FERGUSSON within the UE landscape

FERGUSSON within the UE landscape

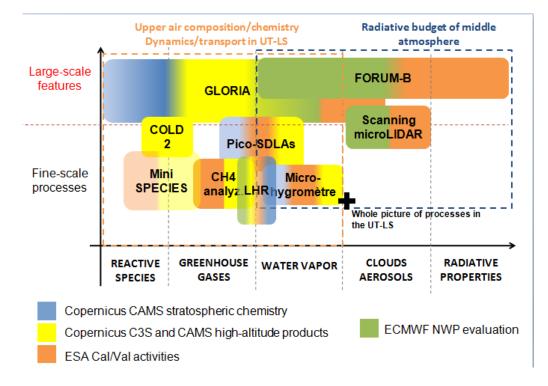
FERGUSSON in main points

The main characteristics of FERGUSSON are :

1. Technological innovation for better and lower cost observations in UTLS and stratosphere

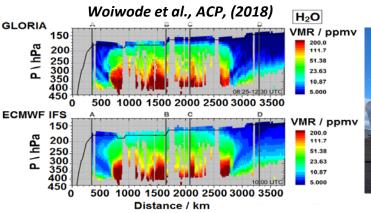
2. Development of sustainable systems for long-term regular observations in UTLS and stratosphere

3. FAIR in-situ datasets in support of climate reanalyses, modelling and science


4. Support of Cal/Val activities for Copernicus Expansion missions, the ESA FORUM mission, Sentinels, EarthCARE and Altius missions, EumetSat (IASI-NG) and other relevant satellite missions (e.g. CNES MicroCarb, ESA MERLIN...)

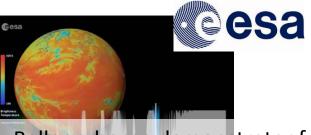
Workshop HEMERA – July 4-6, 2022

The consortium & observational capabilities


Complementarity of observations for a comprehensive picture of the UT-LS

GLORIA-LITE – PIs: F. Friedl-Vallon (KIT) P.Preusse (FZJ)

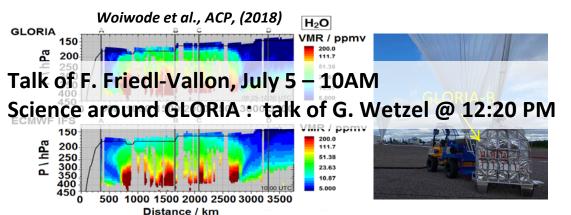
Hyperspectral limb viewing FTIR 2-D picture of multiple reactive and non-reactive species Ultra compact version of GLORIA-AB/B


Tropopause fold from flight of GLORIA onboard HALO aircraft in January 2019 over Italy

Talk of F. Friedl-Vallon, July 5 – 10A Mkshop HEMERA – July 4- 6, 2022

FORUM-B (CNR) – PI: L. Palchetti

FIR spectrometer First-time measurements of FIR portion of OLR


Balloon-borne demonstrator for the FORUM mission

GLORIA-LITE – PIs: F. Friedl-Vallon (KIT) P.Preusse (FZJ)

Hyperspectral limb viewing FTIR 2-D picture of multiple reactive and non-reactive species

Ultra compact version of GLORIA-AB/B

Tropopause fold from flight of GLORIA onboard HALO aircraft in January 2019 over Italy

FORUM-B (CNR) – PI: L. Palchetti

FIRMOS-B instrument

FIR spectrometer First-time measurements of FIR portion of OLR



Balloon-borne demonstrator for the FORUM mission

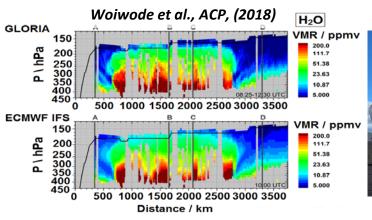
GLORIA-LITE – PIs: F. Friedl-Vallon (KIT) P.Preusse (FZJ)

Hyperspectral limb viewing FTIR 2-D picture of multiple reactive and non-reactive species Ultra compact version of GLORIA-AB/B

Tropopause fold from flight of GLORIA onboard HALO aircraft in January 2019 over Italy

FORUM-B (CNR) – PI: L. Palchetti

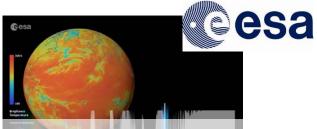
FIR spectrometer First-time measurements of FIR portion of OLR


FIRMOS-B instrument

Balloon-borne demonstrator for the FORUM mission

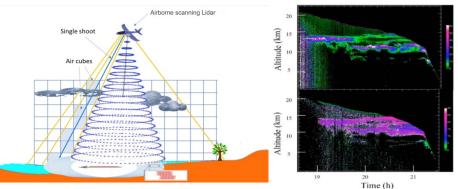
GLORIA-LITE – PIs: F. Friedl-Vallon (KIT) P.Preusse (FZJ)

Hyperspectral limb viewing FTIR 2-D picture of multiple reactive and non-reactive species Ultra compact version of GLORIA-AB/B


Tropopause fold from flight of GLORIA onboard HALO aircraft in January 2019 over Italy

FORUM-B (CNR) – PI: L. Palchetti

FIR spectrometer First-time measurements of FIR portion of OLR


Talk of L. Palchetti session S9, July 6 FIRMOS-B inst @ 09:00 AM

Balloon-borne demonstrator for the FORUM mission

Complementing nadir looking sounder data

MULID2-Scan (CNR) Pls: F. Cairo/G. Di DonFrancesco

Di Donfrancesco et al., Appl. Opt., (2006)

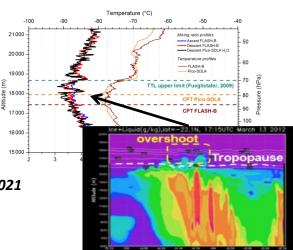
Cloud profile during long-duration of MULID in the framework of the HIBISCUS European project

Scanning elastic LIDAR with 2 wavelenghts and polarization diversity. Cloud top/bottom, Ice Water Content, optical thickness, vertical mass distribution of particulates

Together with FORUM-B : Impact of ice cirrus clouds properties on the ERB

Tunable diode laser instruments

High precision, high spatial/temporal resolution for selected set of parameters

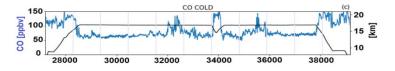


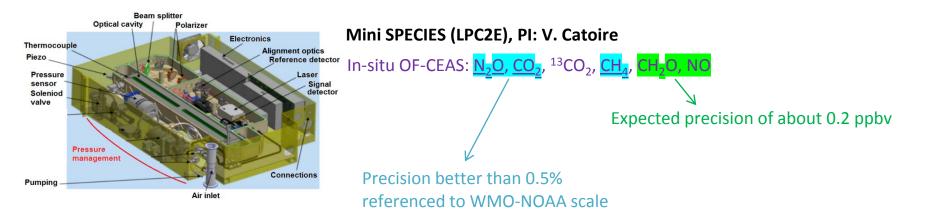
Pico-STRAT H₂O/CO₂

Pico-SDLAs (GSMA/DT-INSU), PIs: G. Durry/M. Ghysels

Autonomous & quick launches Long-duration observations & highly-resolved vertical profiles

> Ghysels et al., AMT, (2016) Riviere et al., EGU 2021 Ghysels et al., ESA WV CCI User workshop, June 14-16, 2021


TRO-Pico, Bauru Brazil, March 13 2012


COLD2 & methane analyzer (CNR), PIs: F. D'Amato/S. Viciani

Profiles of CO, N₂O, CH₄, CO₂

Viciani et al., sensors, (2018) Bucci et al., ACP, (2020)

Tunable diode laser instruments

Talk of V. Catoire – earlier: July 5 @ 10:15 AM

Large range of atmospheric composition datasets at high spatial and temporal resolution

Development of new sounding techniques

Micro hygrometer (LPC2E) PI: M. Chartier, G. Krysztofiak

Non-cryogenic frost-point hygrometer Frost-point techniques evolution for long-duration flights

Ground-based LHR (ULCO) PI: W. Chen

Mobile Ground-based Laser Heterodyne Radiometer Trace columns & vertical profiles : CO_2 , CH_4 , water vapor and isotopes In complement of EM27 & FTIR => observation networks

New airborne platforms for climate research and more...

Broad applicative developments on sounding systems

Long-duration balloons:

Persistent, navigable long-duration balloon (CNES/CNIM Air Space) First prototype by 2024 - Business model to be defined Flights of several months - navigable - stationnary position possible

Long-duration sounding balloons (CNES)

Increase of sounding balloon flight duration : from 2 hours to several days

Communication systems :

Upgrade of the EMPIRE & ETAG systems (Swedish Space Corporation)

Control of flight, science data transmission, could accommodate TransAtlantic flights, transmission of basic meteorological parameters (e.g. P, T and wind)

New airborne platforms for climate research and more...

Broad applicative developments on sounding systems

Long-duration balloons:

Persistent, navigable long-duration balloon (CNES/CNIM Air Space) First prototype by 2024 - Business model to be defined Talk of F. Vacher – Session S9, July 5 @ 12:15 AM Flights of several months - navigable - stationary position possible

Long-duration sounding balloons (CNES)

Increase of sounding balloon flight duration : from 2 hours to several days

Communication systems :

Upgrade of the EMPIRE & ETAG systems (Swedish Space Corporation)

Control of flight, science data transmission, could accommodate TransAtlantic flights, transmission of basic meteorological parameters (e.g. P, T and wind)

Airborne campaigns and satellite validation activities

4 airborne campaigns from 2024 - 2026

TransAtlantic flight duration: 4 to 6 days Kiruna => Northern Canada GLORIA LITE: test flight Mini SPECIES

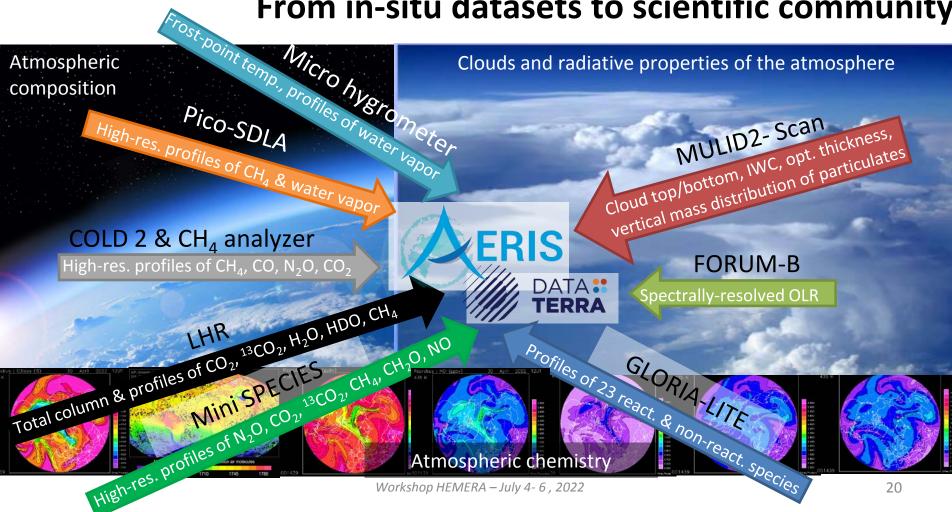
Radiosounding flights Qualification campaign Pico-Light and micro hygrometer

Brazil 2024

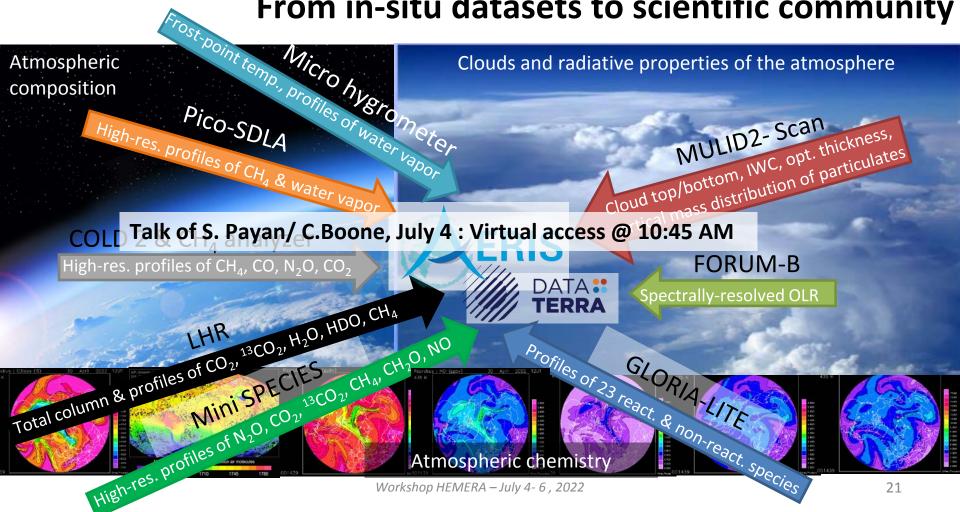
10-hours of flights : ATR 42 Interoperability of payloads Pico-Light, Mini SPECIES

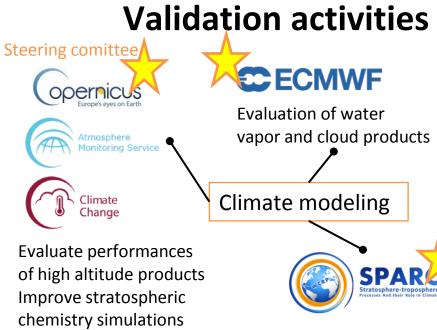
Toulouse 2025

METEO


CN

Brazil 2026


Demonstration campaign All instruments ZPB, SPB, RS flights Impact assessment Satellite validation activities


From in-situ datasets to scientific community

Workshop HEMERA – July 4-6, 2022

From in-situ datasets to scientific community

Trends in the UT-LS: OCTAV-UTLS, LOTUS Chemical and dynamical processes in the UT-LS: FISAPS/SATIO-LS Evolution of stratospheric aerosols: SSIRC

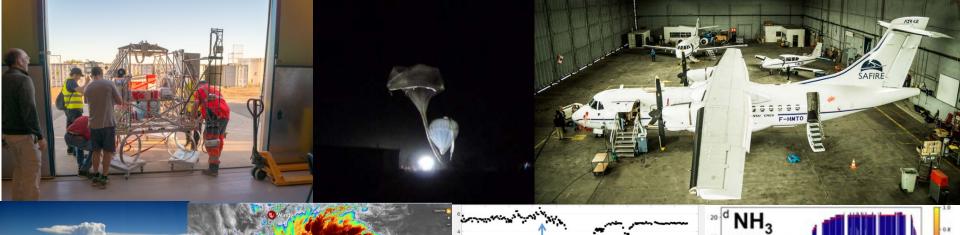
OPERAICUS Europe's eyes on Earth Satelli

Satellite validation

Mission	Year of	Measured variables related to
MISSIOII	launch	FERGUSSON
FORUM (ESA)	2027	Spectral OLR flux, Water vapor, cirrus clouds properties (IWP, Effective Diam., CTH), FIR surface emissivity
CO2M (Copernicus Expansion)	2025	XCO ₂ , XCH ₄ , NO ₂ tropospheric column, aerosols and clouds information
MicroCarb (CNES)	2024	XCO ₂
IASI-NG	2024	Temperature and water vapour profiles, cloud properties All trace gases, reactive gases, biogenic burning tracers, aerosol components
MERLIN (ESA)	2024	XCH ₄
EarthCare (ESA/JAX A)	2023	Cloud informations
Sentinels 4, 5 and 5P (Copernicus , ESA)	2017	O ₃ , SO ₂ , CH ₄ , CO, cloud information
Aura MLS (NASA)	2004	water vapour, temperature, CH ₄ , CO, N ₂ O, HNO ₃ , O ₃

ESA Rocket and balloon programme and related research - 1-5 May 2022

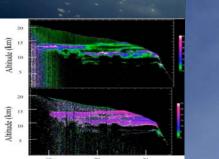
Conclusion


Proposes evolution on scientific-grade airborne instrumentation: interoperability, open access

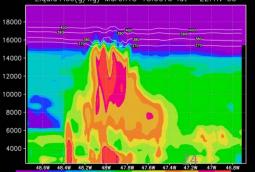
=> increased temporal and spatial coverage of the hard-to-reach stratosphere

Proposes developments of new airborne platforms allowing long-duration, innovative capabilities for climate sounding

Unfortunately not funded this time, but we do not give up!


In preparation for a FERGUSSON 2

THANK YOU FOR TO USE THE TEMPERATURE (°C)


4 ppm

H₂O (ppmv)

20 21 Time (h)

0 0.001 0.005 0.01 0.05 0.1 0.5 1 1.5 2.5 3.5 4