

SPECIES: An example of interoperable instrument (stratospheric balloon and aircraft)

V. Catoire, C. Robert, P. Jacquet, M. Chartier, D. Romanini, G. Krysztofiak

HEMERA workshop: 5 July 2022, Rome (Italy)

Scientific Interest:

- characterization of local, regional and global pollutions
- characterization of air mass circulation using gaseous tracers
- reference measurements (in-situ) for the GHGs and stratospheric ozone drivers (CO₂, CH₄, N₂O) in relation with satellite validations of CNES(-DLR), ESA, CSA, NASA, JAXA...
- input data for chemistry-transport modeling from the ground to the stratosphere (0-40 km alt)

Extreme measurement conditions:

- in-situ : -80 < T < +40 °C and 3 hPa (40km) < P < 1030 hPa (ground)
- fast: in < 2 seconds → low sampling volume → Resolution: 10 m vertically in balloon/aircraft
 and 200 m horizontally in aircraft
- online \rightarrow optical spectrometry
- multi- and variable species \rightarrow modular design: 2 to 4 racks (measurement channels)
- sensitive: trace gas mixing ratios from 0.1 ppbv to 1% (H $_2$ O)
- precise: 1‰ to <10% (NO, CH₂O)
- \rightarrow Infrared laser absorption spectroscopy (near & mid IR)

Costly flights → Failure forbidden → Balloon: Telemetry and remote control → Aircraft: Manual/automatic control on board

The requirement specification

Instrument to be integrated in a balloon gondola (CNES) & a research aircraft (SAFIRE) → Use of CNES certified gondola & SAFIRE certified rack (in relation with DGAC)

ightarrow Design: several points in common between the Balloon and the Aircraft

\rightarrow Anticipate the 2 uses and their certifications

	Zero Pressure BALLOON (BSO)	Research AIRCRAFT (instrument in cabin)
Electricity	28 V DC, < 800 W during 10h Batteries with voltage fluctuations	28 V DC, < 1000 W Voltage fluctuations, referenced connectors and wires + EMC tests
Thermal control of the instrument	> -25 °C rather overheated (lack of air at altitude)	10 to 50 °C
Acceleration resistance	Mostly vertical (< 8 g)	Vertical (< 6,5 g) Horizontal (< 9 g)
Vibrations Fixings	Very low in flight, important during recovery → anti-vibration systems. Screw locking systems	Variable according to the aircraft → anti-vibration systems. Screw locking systems
Materials	Stainless steel (O ₃ and UV resistant)	Non-flammable → aeronautical standards
Instrument- specific caution	Laser	Laser & cell under vacuum (50 hPa)

SPECIES: SPECtromètre Infrarouge à lasErs in Situ

PRINCIPLE of OFCEAS (Morville et al., Appl.Phys. B 2005; Romanini et al., Appl.Phys. B 2006)

Optical-Feedback Cavity-Enhanced Absorption laser Spectroscopy

Each individual rack contains:

- Materials adapted to sticky molecules: electropolished stainless steel, PFA, or amorphous silica coating

SPECIES: Instrumental schematic

LPC2E

SPECIES instrument integrated in the balloon payload

LPC2E

- Optical bench thermostated at 40°C and suspended on vibration dampers,
- HgCdTE detectors cooled by ThermoElectric Cooler (TEC) Peltier at -80°C,
- Lasers: QCL regulated at -30°C and ICL at -60°C $\,$ by TEC,
- Wide range electronics functioning (-40; +70 °C).

4 channels max \rightarrow 4 spectra at ultra-high spectral resolution without interferences

Results: vertical profile of CH₄, Kiruna (68°N) 23/08/2021

ppbv CH₄

Comparison with the other instruments on board the same gondola \rightarrow Differences over the total column:

AirCore-HR - SPECIES = -1.4 ppb

Amulse-ascent - SPECIES = 3.4 ppb

ightarrow Consistent with evaluation of MERLIN accuracy: 4 ppb

LPC2E

Results: vertical profile of CO₂, Kiruna (68°N) 23/08/2021

SPECIES: 1σ precision ~ 2.5°/ $_{\circ\circ}$ (1 ppmv) in 2 s

Differences over the total column: AirCore-HR - SPECIES = -1.7 ppm & Amulse-ascent - SPECIES = -0.9 ppm

→ Consistent with evaluation of MicroCarb accuracy: 1 to 3 ppm

Quality control: ground calibrations after the flight

Profiles calibrated at different pressures with 3 primary standards from WMO scale (collab. LSCE)

CO cal (ppb)

Standard Fr

350

400

1.0419 0.0084

300

Results: vertical profile of CO, Kiruna (68°N), 23/08/2021

PC2E

Current Development: SPECIES in aircraft

Test-flight in aircraft planned in Feb. 2023

← Manual control on board using computer

Water circuit with pump dissipating the heat from the Peltier TECs (balloon: heat naturally radiated to space)

SPECIES the D day

Kiruna (68°N) 23/08/2021

Thank you for your attention!

