

4th-6th July 2022 San Pietro in Vincoli, Università La Sapienza, Rome

HEMERA WORKSHOP

Mark Pearce

KTH Royal Institute of Technology Stockholm, Sweden

Advancing X-ray polarimetry through observations from the stratosphere

67° 53' N, 21° 04' E

SSC

Esrange Space Centre

Polarisation Fraction (PF) = 100%Polarisation Angle (PA) = 0°

- Linear polarisation constrains on source geometry
 - Polarisation Fraction: symmetry of the source
 - **Polarisation Angle:** orientation of the source
- X-ray polarimetry provides a new window on high-energy universe
 - New purpose-built instrumentation is required

Polarisation probes geometry

...10⁶ m³ zero pressure balloon

"... for as long as possible"

• Collecting area drives measurement sensitivity. Eventually limited by mass constraints.

• Measurements are subject to significant non-isotropic background. Strong atmospheric albedo component. Neutrons and forwardscattering X-rays are troublesome. Anticoincidence systems are heavy.

• Multi-day flights are required

e.g. M. Chauvin et al., Nat. Sci. Rep. 7 (2017) 7816 / Nat. Astr. 2 (2018) 652 / MNRAS 477 (2018) L45/ MNRAS 483 (2019) L138.

Cygnus X-I

Accretion disk

5.6 days

–Relativistic jet (radio)

 \sim ~20 M $_{\odot}$ black hole

a>0.92 (e.g. Fe lines)

~40 M⊙ supergiant star

d_{Earth}~7200 Lyr

Black-hole binary Cygnus X-1

- PoGO+ observations (20-180 keV):
 - Emission weakly polarised (<8.6%, 90% CL)
 - Polarisation angle perpendicular to accretion disk

• No indication of "strong gravity"

- Implies that the inner part of the accretion disk ("corona") is an extended object or lies far from the black hole
- Geometric information without imaging (10^{-15°}!)
- Intriguing a more sensitive mission is now required.

M. Chauvin et al. (PoGO+ Collaboration), Nature Astronomy 2 (2018) 652

Pointing precision: 1 arcsec (RMS) Pointing knowledge < 15 arcsec (3σ)

XL-Calibur tests at CSBF facilities, Palestine, USA

XL-Calibur: spectropolarimetry 15-80 keV. MDP ~2% / √t_{day}

X-ray mirror (Hitomi spare) 213 nested Pt/C-coated shells (Wolter I) Effective area: 180 cm² @ 30 keV

• Crab pulsar

- Rotation powered pulsar
- Phase-resolved polarimetry
- Differentiate emission models

- Cygnus X-I (hard spectral state)
 - Black hole binary
 - Discern geometry of X-ray bright black hole corona.

Balloon-satellite synergy

H. Krawczynski et al. (IXPE Collaboration) *arXiv:2206.09972* **20th June 2022**

2-8 keV PF=(4.0±0.2)% (20σ !) PA=(-20.7±1.4)°

Clear support for a corona extended in the plane of the accretion disk

Seed photons from outer cool disk

PD(%)

Synchrotron seed photons

8

i=47°

i=30°

Wedge-shaped corona

XL-Calibur flights (NASA APRA programme)

~5-7 days Launch attempts: 25/6, 30/6, 1/7, 2/7, (3/7), ...

~8-55+ days December/January Planned for 2023/2024

Hoping for better weather ...

... before the campaign ends on ~I3 July

The XL-Calibur Collaboration

Q. Abarr, H. Awaki, R. Bose, D. Braun, G. De Geronimo, P. Dowkontt, T. Enoto, M. Errando, Y. Fukazawa, A. Furusawa, T. Gadson, E. Gau, V. Guarino,

S. Gunji K. Hayashida, S. Heatwole, K. Ishibashi. M. Ishida. N.K. lyer, K. Harmon. F. Kislat. M. Kiss. B. Rauch, T. Kitaguchi, F. Ryde, H. Krawczynski (PI), R.J. Lanzi, Y. Saito. L. Lisalda,

T.A. Stana. Y. Maeda. H. Matake, D. Stuchlik. H. Matsumoto. H. Takahashi. T. Miyazawa, T. Takeda. T. Mizuno. M. Takeo. T. Okajima, T. Tamagawa, H. Tsunemi. M. Pearce, Z. Peterson. N. Uchida. Y. Uchida. N. Rodriguez Cavero K. Uchiyama, A.T. West, E.A. Wulf. S. Spooner Y. Yoshida

Washington

University in St.Louis

MCDONNELL CENTER