

Funded by the Horizon 2020 framework program of the European Union

HEMERA WORKSHOP

CNES Balloon Program

André Vargas (CNES)

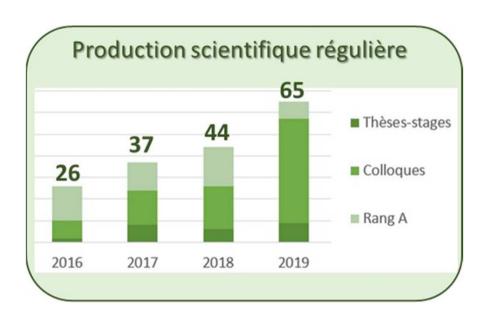
(Rome, July 4rd - 6th, 2022)

The CNES Balloon Program

\$UMMARY

- The French Balloon Science Program & its major scientific issues
- ***** Balloon science outings
- Balloons projects and prospects
- The technical and operational infrastructure




French Laboratories Driving Balloon Activities

15 French laboratories implied in scientific balloon activities

French Balloon Program & Major Scientific Issues

Fields of application

- Scientific research areas: ocean-atmosphere, astronomy-astrophysics, solid-Earth-solid, but also life sciences, physics particle
- Satellite demonstrators
- Calibration and validation of satellite's instruments
- Technological developments (HASP technologies, solar cells, etc.)

Scientific issues of ocean-atmosphere science

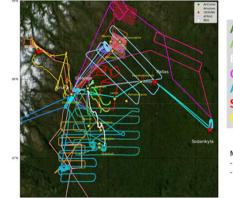
- **Essential climate variables**
- Greenhouse gases
- * Reactive species, ozone, halogenated compounds
- Water vapor, aerosols
- Atmospheric dynamics
- Gravity waves, Brewer Dobson circulation, QBO, mixing through barriers
- **Atmosphere radiative balance (OLR-OSR)**
- Impact of volcanism, primitive atmosphere
- Atmospheric electricity

MAGIC: Monitoring of Atmospheric composition and Greenhouse

CO₂

AirCore 001; Burst=13h21

ATR42 051 up; 8h06-8h30


ATR42 051 down : 10h42-11h10

gases through multi-Instruments Campaigns (C. Crevoisier & All)

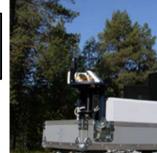
Vectors			Instruments		Team	Observation
Balloons	Weather balloons (BLD) @Esrange		AirCore-light	5	LMD	0-30 km profiles (CO ₂ , CH ₄ , CO, N ₂ O, T, H ₂ O, wind)
			Amulse	5	GSMA	0-30 km profiles (CO ₂ , CH ₄ , H ₂ O, T)
	W. balloons @ Sodenkylä		AirCore		FMI/RUG	0-30 km profiles (CO ₂ , CH ₄ , CO, T, H ₂ O, wind)
	Stratospheric Balloons (BSO) SUPER CLIMAT @ Esronge		AirCore-HR	1	LMD	0-30 km profiles (CO ₂ , CH ₄ , CO, T, H ₂ O, wind + C isotopes, N ₂ O)
			AirCore-light	2	LMD	
			Amulse	1	GSMA	0-30 km profiles (CO _j , CH _{ij} , H _j O, T)
			SAMPLE	1	GSMA	0-30 km profiles at a few points (CO ₂ , CH ₄ , H ₂ O, T)
			SPECIES	1	LPC2E	0-30 km profiles of many trace gases at ppt level
	FTS		CHRIS	1	LOA	Weighted columns XCO ₂ , XCH ₄ , XCO, etc.
Ground			EM27/SUN	5-6	CNESx1, GSMAx1, LERMAx1, FMIx1, KITx1, UoLx1	
•	In-situ		Picarro	3	LMDx2, LSCEx1	In-situ concentration of CO ₂ , CH ₄ , CO
	SAFIRE ATR42	In-situ	Picarro	2	SAFIREx1, LSCEx1	In-situ concentration of CO ₂ , CH ₄ , CO
			SPIRIT	1	LPC2E	In-situ concentration of NO ₃ , CH ₄ , CO
		Lidars	CHARM-F	1	DLR	Weighted columns XCO ₂ , XCH ₄
2			LIVE	1	ONERA-DOTA	Wind profile
Aircrafts	DLR Cessna In-situ		Aerodyne Dual QCLS		DLR	In-situ concentration of CO ₂ , CH ₄ , CO
₹			MetPod		DLR	T, H ₂ O, 3D-wind
			Flask sampler		DLR	CH ₄ isotopes
	Twin Otter		HyTES		NASA/JPL	CH _a , surface
			SPECIM		KCL	

 CH_{4}

AirCore 001; Burst=13h21

ATR42_051_up;8h06-8h30

ATR42 051 down; 10h42-11h10

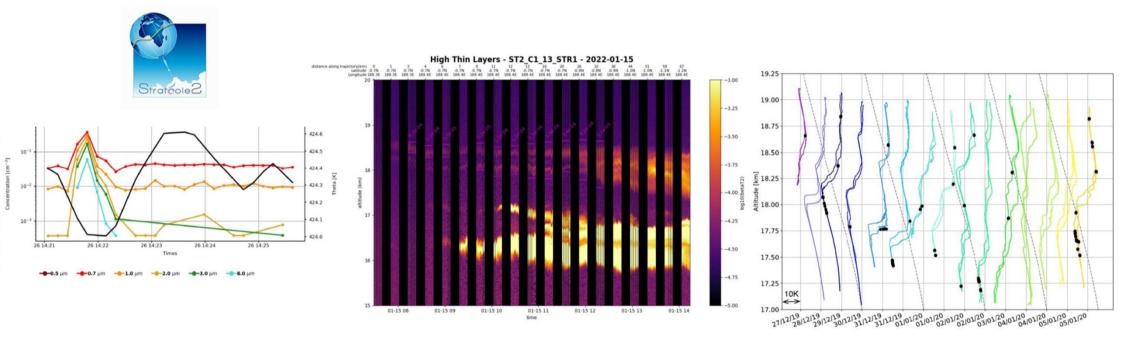


High synergies of combined campaigns: aircraft, balloon and ground instrumentation

Up and down

AirCore-light 13h21

ATR 8h



Strateole-2 (1/3)

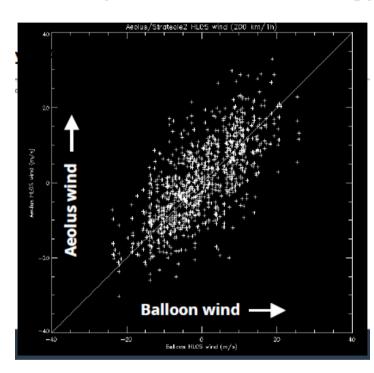
Detection of particles larger than 1 μm (cirrus-like) at altitudes higher than the climatological cold-point tropopause (A. Herzog & All)

LPC particle concentration

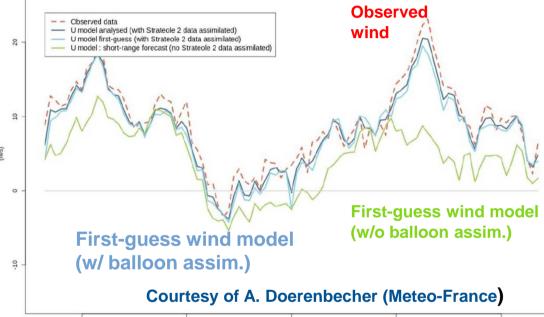
BeCOOL Lidar attenuated backscatter

RACHuTS temperature and aerosols

HEMERA WORKSHOP, Rome, July 4rd - 6th, 2022



Strateole-2 (2/3)



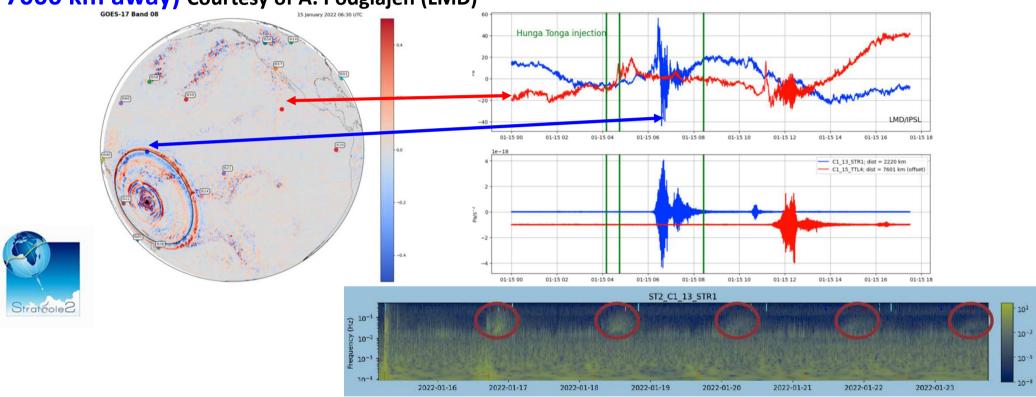
Operational meteorology and satellite validation (A. Herzog & All)

- Balloon-borne winds obtained during the 2019 campaign have also been used to validate the ESA Aeolus satellite mission (first wind lidar in space)
- In-situ TSEN meteorological observations are processed and quality-checked in real-time during balloon flights
 - Data distribution to NWP centers

déc. 10

Improvement of Arpège model circulation in the tropical lower stratosphere

Strateole-2 (3/3)



7000 km away) Courtesy of A. Podglajen (LMD)

GOES-17 Band 08

COURTESY OF A. Podglajen (LMD)

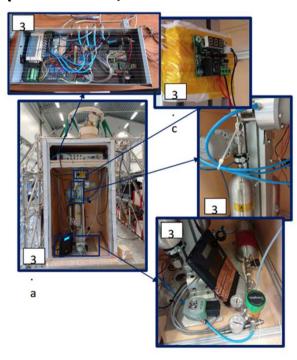
- TSEN Pressure measurements detected both the Lamb wave and the infrasound signals generated by the eruption (multiple passes observed)
- Earthquakes also detected => planetary application

HEMERA WORKSHOP, Rome, July 4rd - 6th, 2022

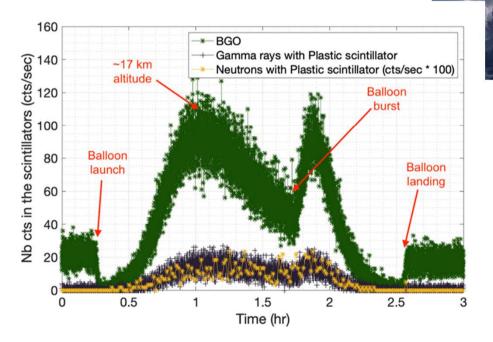
XENON: Primitive Atmosphere

OREO: Atmospheric Electricity

OREO balloon



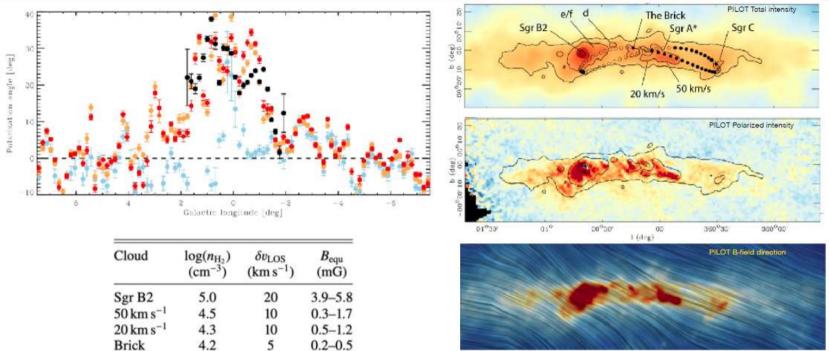
Understanding of terrestrial xenon leakage


(M. Moreira, E. Nuñez Guerrero - ISTO/OSUC)

Radiation measurements during thunderstorm (X-Storm)

(S. Celestin - LPC2E)

Figure 3a. Sampling device. **3b.** Electronic system. **3c.** Thermal system lector. **3d.** Pneumatic valves and sampling bottles. **3e.** Air compressed bottle, battery, and electric valve.

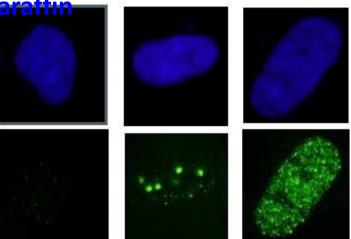

Gamma ray and neutron profiles in the atmosphere.

Astrophysics - First Results of Pilot Flight#2

Mangilli et al. A&A 630, A74 :

- The B-field traced by dust follows the twisted torus of the Central Molecular zone
- **❖** The direction is globally consistent with that seen with Planck (tilt of 22°)
- **❖** The higher resolution of PILOT allows to measure it down to GMC scales
- ❖ The magnetic field inferred for several GMCs is surprisingly strong: ~1 mG

Life Science - First Results of Bernadotte Projects

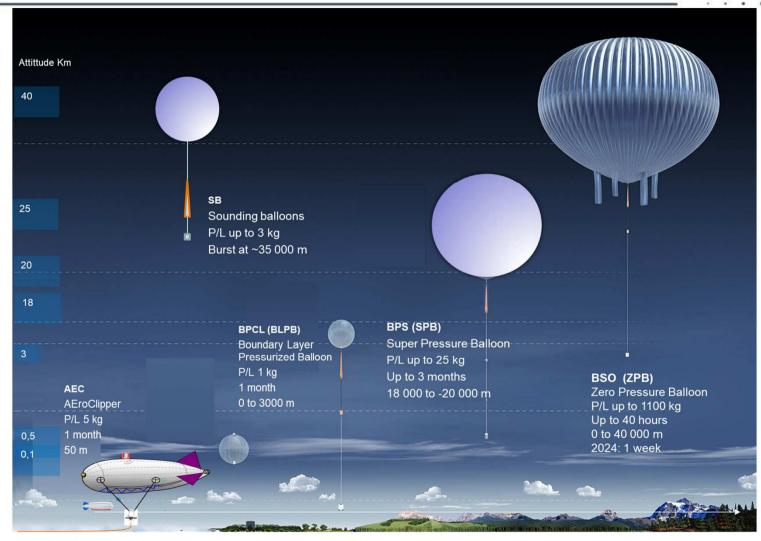


See N. Foray & J. Restier--Verlet

- **6** cultured human cell lines exposed to radiation in the stratosphere
 - ***** Fibroblasts Radio-resistant skin, Radiosensitive skin Human-Osteoblasts
 - * Heart Fibroblasts, Heart Myocytes, Human Crystalline Epithelium
- * 8 shields
 - ❖ Wood, wood + paraffin , regolith 1, regolith 2, Aluminum, Aluminum / Kevlar ,

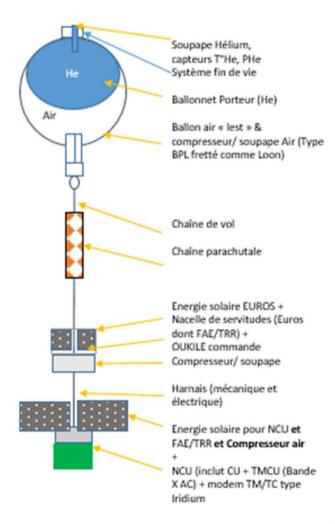
Aluminum / Kevlar /aluminum, Lead, Lead + paraffin

- *** THAT IS**
 - 600 different conditions
 - **❖ 1200** slides
 - 96000 cores read
 - **4** months of reading



CNES Balloon Vehicles

SPS's Development: The Maneuvering Balloon



- Project developed with CNIM AS (manufacturer of CNES balloons) & Airbus Space & Defense
- 2022: System Definition
 - ❖ Bi-balloon vehicle, based on 'pumpkin' pressurized balloon with an internal helium balloon
 - **Re-use of SPS avionics & subsystems**
- 2023: Ground qualification
 - Critical subsystems: compressor, valves, avionics, ...
 - The technique of balloon launching
- **❖ 2024:** In fight demonstration (Strateole-2 campaign)

Ex.: Google-Loon Trajectories

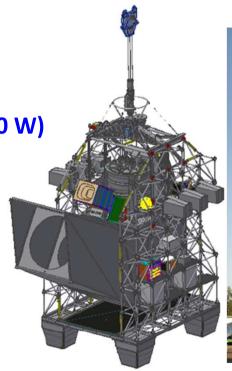
CNES Objective for Balloon Activities in Brazil

Objective: new launch site, meeting the following requirements

- ❖ Scientific constraint: latitude between 0° South and 10° South
- Availability: More than 20 years
- **❖** Safety constraint: population density less than 1 inhabitant per km²
 - **❖** Bauru & Sao Jose (AEB Balloon Facilities): too much South
 - **Teresina: Too much population at this latitude (East and West)**
 - ***** Tocantins area can be an option
- Three launch sites to study
 - Pau do Ferros (Rio grande do Norte)
 - **❖ Ø**AEB proposal
 - Palmas (Tocantins)
 - cnes proposal
 - Balsas (Maranhão)
 - New cnes proposal for analysis

The first launch campaign with ZPS (and possibly other types of balloons) is scheduled for no earlier than 2025 or 2026

Scientific Gondola/Platform: On-Board Services



A service-oriented architecture

- Science TM &TC communication links
 - * RF S-Band: 1Mbps & 50 kbps
 - **❖** Satellite: >= 100 kbits/s (2023)
- Thermal control of the gondola
- **❖** Power supply distribution ~ 1 kW, solar energy (4 x 350 W)
- Diurnal stellar sensor: ESTADIUS
- Pointing performances
 - **❖** Azimuth coarse pointing: stability ~ 1′
 - ❖ 2 axes fine pointing: accuracy < 1"</p>

Customers/ partners, users:

- French labs via National Program
- European payloads from HEMERA (H2020)
- Canadian payloads (CSA/CNES agreement)
- Technologic, academic, institutional or industrial payloads: billing or agreement

The Balloon Operational Infrastructure: The Campaigns

Zero Pressure Balloon (ZPB): annual campaign

- ❖4-5 flights: Klimat 2021, STRATO Science 2022, ...
- ❖~15 French and international payloads
- ❖Launch sites: Kiruna (68N), Timmins (48N), Alice Springs (24S), ...

Super Pressure Balloons (SPS): 1 campaign every 3-5 years

- **❖**Long duration flights
- ❖Strateole-2 validation: 8 flights, Nov. 2019- Feb. 2020
- ♦ 1st scientific campaign: 17 flights, Oct. 2021- Jan. 2022

Sounding Balloon (SB) campaigns

- All year round, from Aire sur l'Adour
- During ZPB campaign (MAGIC 2021)
- Projects/payloads: MAGIC, Oreo, AirCore, LOAC, AMULSE, POC Startups, Universities ...

Dedicated campaigns

FIREBall: CNES pointing gondola launched by NASA

The Balloon Operational Infrastructure: The Prospects

Zero Pressure Balloon (ZPB): annual campaign

- ❖~15 French and international payloads
- ❖Timmins 2022 & 2023, Kiruna 2024, ...
- Transatlantic flight: 6 days duration in 2024
- ❖New equatorial launching site in Brazil (2025), ...

Super Pressure Balloons (SPS): 1 campaign every 3-5 years

- Long duration flights
- ❖2nd scientific campaign: 20 flights, Oct. 2024- Jan. 2025
- ❖1st flight of Maneuvering Super Pressure Balloon: 2024

Sounding Balloon (SB)campaigns

- All year round, from Aire sur l'Adour
- Aire sur l'Adour: reference stations for Green House Gases measurements (SB flights & ground instrumentation)

CNES Balloon Program

