Chandra Tutorial

Eleonora Torresi 2010 + Giorgio Lanzuisi 2011/2014/2015 + Fabio Vito 2012

Cristian Vignali 2013, 2016, 2017

Giulia Migliori 2018

Astrophysics Lab - 2019

https://cxc.harvard.edu/ciao/

CIAO: software for Chandra data analysis

The spacecraft

The real spacecraft

Launched: July 23, 1999

The real spacecraft

Mirrors

4 mirrors only Low effective area but sharp PSF, hence low background

Mirror elements are 0.8 m long and from 0.6 m to 1.2 m diameter

Strengths...

- Sest spatial resolution of any X-ray satellite: ~1" (Hubble ~0.1", next best X-ray satellite, XMM-Newton ~10", ROSAT ~5");
- good energy range (300 eV 9 keV) & resolution (E/ΔE ~5 40);
- ✓ best energy resolution (Gratings) of any X-ray satellite: E/ ΔE~1400 – 200 (Radio & Hubble ~20,000, next best X-ray satellite, XMM-Newton ~ 500 – 40);
- Iargest dynamic flux range of any satellite ever flown:11 orders of magnitude; 10⁻¹⁸ – 10⁻⁷ erg cm⁻² s^{-1.}

...and weaknesses

0.1 0.4 0.3 1.8 40 8.1 16.2 35.7

and to detect sources in very low-count regime: 5 counts may be a detection! (even less for point-like sources at on-axis position)

The detectors:

ACIS-S chips

HRC

+HETG and LETG dispersive spec.

The detectors:

The detectors:

1. The fundamental rules to reduce X-ray data are the same in most of the cases BUT a good knowledge of the properties of X-ray satellites and their instruments is important to maximize the scientific output

- 1. The fundamental rules to reduce X-ray data are the same in most of the cases BUT a good knowledge of the properties of X-ray satellites and their instruments is important to maximize the scientific output
- 2. X-ray data from each satellite are usually accompained by specific software and tools to make a proper and easy data reduction and analysis

- 1. The fundamental rules to reduce X-ray data are the same in most of the cases BUT a good knowledge of the properties of X-ray satellites and their instruments is important to maximize the scientific output
- 2. X-ray data from each satellite are usually accompained by specific software and tools to make a proper and easy data reduction and analysis

3. How to get data: proposals of observations: if accepted

proprietary data for one year,

then archival data available to the community

Main steps in *Chandra* data analysis

- Download data from a public archive
- □ Visualize the X-ray data
- □ Reduce the X-ray (*Chandra*) data
- Specific applications: how to create a radio/X-ray contour for an extended source

Main steps in *Chandra* data analysis

Download data from a public archive

- □ Visualize the X-ray data
- Reduce the X-ray (*Chandra*) data
- Specific applications: how to create a radio/X-ray contour for an extended source

Where can I find X-ray data archives?

There are **multi-mission archives** (e.g., HEASARC, ASI) and **mission-related** (specific) **archives** (e.g., at the web pages of *Chandra*, XMM-*Newton*)

Chandra archive: webchaser

Chandra			
X-ray Cente	New Search	1	<u>Retrieval List Help</u> Chandra Data Archive
Search			Reset
File Upload	Coordinates		
		Cone Search 🗘	
Target Name	3C111 Resolve Name	RA/Long/I Dec/Lat/b	
Name Resolver	SIMBAD/NED \$	Coord System Equatorial J2000 \$ Equinox 2000 Radius 10 arcmin	
Observation ID	Sequence Number	Proposal Number	
Proposal Title	PI Name	Observer Name	
Start Date	Public Release Date		
Exposure Time (ks)	Approved Time (ks)	Avg. Count Rate (hz)	
Archived Observed Scheduled Unobserved Untriggered	Solar System Stars and WD <u>Science Category</u> WD Binaries and CV BH and NS Binaries SN, SNR and Isolated NS	Type GO DDT CAL	00 01 02 03 04
Instrument ACIS ACIS-I ACIS-S HRC	Grating LETG Exposur HETG	ACIS TE ACIS CC HRC Timing	Proposal Cycle 00 01 02 03 04 04 00 01 02 03 04 00 03 04 00 03 04 00 00 00 00 00 00 00 00 00 00 00 00
Customize Output:			
Sort Order	Status	http://cda.harvard	tedu/chaser/
Row Limit			
Coord System Save As	Equatorial J2000 C Equinox 2000 Format Sexagesimal (hh/s	ld mm ss.ss) ♦	

Selection possible on the basis of source name/coordinates/PI name/ObsID, etc

you can view the details of each observation

View	Ch X-r	<mark>andra</mark> ay Cente	New Searc	<u>h</u>					Search 1	Results	ry package			Search Resu	lts Retrieval List	Help	Chandra Data Arc	chive
Select all	Add Products to Retrieval List Sccondary package																	
Select	\$ Row	Seq Num	♦ <u>Obs ID</u> ♦	Instrument	• Grating •	Appr Exp 🗢	Exposure \$	Target Name	PI Name	¢ <u>RA</u>	Dec \$	Status \$	Data Mode	Exp Mode	Avg Cnt Rate \$	Evt Cnt \$	Start Date	Public I
		1 702798	14990	ACIS-S	NONE	127.0	92.1	3C 111	Perlman	04 18 21.30	+38 01 36.00	archived	VFAINT	TE	5.65	520726	2013-01-10 04:29:04	4 2014-0
		2 703007	16219	ACIS-S	HETG	150.0	143.41	3C 111	Tombesi	04 18 21.30	+38 01 35.80	archived	FAINT	TE	7.63	1094231	2014-11-04 10:48:50	5 2015-1
		3 703412	19615	ACIS-S	NONE	26.0	22.54	3C 111	Perlman	04 18 21.30	+38 01 36.00	observed	VFAINT	TE	3.07	69154	2017-12-26 15:46:41	1 2019-0
		4 703412	20907	ACIS-S	NONE	32.0	28.16	3C 111	Perlman	04 18 21.30	+38 01 36.00	observed	VFAINT	TE	2.97	83648	2017-12-29 03:21:51	1 2019-0
		5 703412	20908	ACIS-S	NONE	32.0	27.23	3C 111	Perlman	04 18 21.30	+38 01 36.00	observed	VFAINT	TE	2.93	79812	2017-12-29 18:15:31	1 2019-0
		6 703413	19616	ACIS-S	NONE	90.0		3C 111	Perlman	04 18 21.30	+38 01 36.00	unobserved	VFAINT	TE			2018-12-25 00:00:00	0
Totals						0.00	0.00									0		
	Seq. # ObsID Expo																	

mark one (all) of these boxes to select the observations for the download. An archive (.tar) file will be prepared for the download. This contains both primary and secondary datasets needed for immediate use for scientific purposes or complete reprocessing using the most up-to-date calibrations and CIAO tools Details of the observation: instrument setup, CCDs in use, abstract of the proposal, pipeline-processed products, etc.

Observation ID: 14990	Sequence Number:	702798	Status:	archived
Add to Potrioval List	Observation ID:	14990	Proposal Number:	14700630
Add to Retrieval List	Туре:	GO	Proposal Cycle:	14
<u>Primary package</u>	PI Name:	Perlman	Observer:	Perlman
<u>Secondary package</u> <u>Custom selection</u>	Science Category:	ACTIVE GALAXIES AND QUASARS	Joint Observatories:	HST
	Target Name:	3C 111	Grid Name:	
	RA (J2000):	04 18 21.30		
→ <u>Summary</u> Details	Dec (J2000):	+38 01 36.00		
V&V Report Proposal Abstract	Instrument:	ACIS-S	Data Mode:	VFAINT
Images Data packages	Grating:	NONE		
Primary	Start Date:	2013-01-10 04:29:04	Observing Cycle:	14
Secondary External links	Approved Time:	127.00 ks	Public Release Date:	2014-01-15 01:50:57
Publications Processing Status Sequence Summary	Exposure Time:	92.10 ks		
Related Observations				
By Sequence By Proposal	Sequence r	number: six-digit number,	the first one prov	vides the

ei. Six-uigit humber, the mist on category of your observations (7=AGN, 8=clusters, etc.)

Alternatively (using a CIAO command-line)

download_chandra_obsid 14990 (once the obsid, 14990 in this case, is known)

otherwise

By Monitor/Followup

By Group

find_chandra_obsid 3C111

Main steps in *Chandra* data analysis

- Download data from a public archive
- □ Visualize the X-ray data
- □ Reduce the X-ray (*Chandra*) data
- Specific applications: how to create a radio/X-ray contour for an extended source

How to reduce and analyzed Chandra data: CIAO software

Shell Edit View Bookmarks Window Help		- 1	2 * 🔿 🖣	PRO 🕢 (97%)	sab 17:03	Q
e O O torr	esi@bitonno:/RossiFumi/users/torresi/4C19.44/chandra					\bigcirc
🔚 🕧 🧏 🚯 🦳						
New Info Customize Close	Execute		Bookmarks			
[torresi@bitonno]chandra>						
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						- 1
[torresi@bitonno]chandra>						ſ
[torresi@bitonno]chandra>						
[torresi@bitonno]chandra>						
[torresi@bitonno]chandra>						
<pre>si@bitonno]chandra>ls</pre>						
827						
[torresi@bitonno]chandra>	cd 827 (where 827=Ob	siD)	#obsic	k		7

http://cxc.cfa.harvard.edu/ciao/data_products_guide/

secondary:

evt1.fits : Event file, fully calibrated unfiltered event file. Used when reprocessing.
 msk1.fits : Mask file to identify active part of detector

.flt1.fits : Good time interval based on mission time line parameters

.mtl1.fits : Mission time line. Important science and engineering values vs time

FILE FORMAT

f=flight file revision format acisf00827N003_evt2.fits instrument Observation ID content (=event) & level

- The event file is in FITS (flexible image transport system) format;
- A single Chandra file can contain multiple "datasets" (e.g. data, Good Time Intervals, weight map, regions) which are stored in "blocks".
- Blocks can contain image or table data.
- the event file can be though as a 4-D array which stores for each event the informations about energy, position and time;
- however in practice it is more complicate and there are more parameters (multiple coordinate systems, times, channels/energy);
- CIAO tools to explore FITS files (dmlist, dmstat..) or fv (an heasarc package)

DATA REDUCTION & ANALYSIS WITH CIAO

dmlist event_file.evt opt=subspace(/header/blocks/cols/data)

sapmcm127:repro gmiglior\$ plist dmlist

```
Parameters for /Users/gmiglior/cxcds_param4/dmlist.par
```

sapmcn127:primary gniglior\$ dnlist acisf00827N003_evt2.fits cols

Columns for Table Block EVENTS

ColNo	Name	Unit	Туре	Range	
1	time	5	Real8	87647837.5766288623:	87667996.7588890046 S/C TT corresponding to mid-exposure
2	ccd_id		Int2	0:9	CCD reporting event
3	node_id		Int2	0:3	CCD serial readout amplifier node
4	expro		Int4	0:2147483647	Exposure number of CCD frame containing event
5	chip(chipx,chipy)	pixel	Int2	1:1024	Chip coords
6	tdet(tdetx,tdety)	pixel	Int2	1:8192	ACIS tiled detector coordinates
7	<pre>det(detx,dety)</pre>	pixel	Real4	0.50: 8192.50	ACIS detector coordinates
8	sky(x,y)	pixel	Real4	0.50: 8192.50	sky coordinates
9	pha	adu	Int4	0:36855	total pulse height of event
10	pha_ro	adu	Int4	0:36855	total read-out pulse height of event
11	energy	eV	Real4	0: 1300003.0	nominal energy of event (eV)
12	pi	chan	Int4	1:1024	pulse invariant energy of event
13	fltgrade		Int2	0:255	event grade, flight system
14	grade		Int2	0:7	binned event grade
15	status [4]		Bit(4)		event status bits

All the information of your observation are contained in the header of the fits file. You can visualize it by using the FTOOL command f_V

Image: Summary of acisf07302_000N001_evt1.fits in /RossiFumi/users/torresi/4C19.44/chandra/7302/se

File	Edit	Tools							Help	
Inde	ex	Extension	Туре	Dimension	\bigcirc		View			
	0	Primary	Image	0	Header	Im	age	Table		
	1	EVENTS	Binary	20 cols X 277216 rows	Header	Hist	Plot	All	Select	
	2	GTI	Binary	2 cols X 1 rows	Header	Hist	Plot	All	Select	
File Edit Search for:: DATE-OBS= OBS_MODE= DATE-END= TIMEUNIT= DATEACLAS= RADECSYS= BTIMRULL= DATACLAS= RADECSYS= BTIMRATE= BTIMCORE= TIMEREF = TASSIGN = DTMRORE TIMEREF = TASSIGN = SIM_Z = FOC_LEN = FOC_LEN = TIERABSO= TIMVERSN= GRATING = DETMAM = DET PNT = DEC PNT = RA TARG = DEC TARG= DET TARG = DET TARG	Tools '2006-03-' 'POINTING '2006-03-' 'TT 5.0814000 0.0000000' 'S 2.563883' '0BSERVED 'ICRS 2.562500' 1.626554' 0.0000000' 'LOCAL 'SATELLITI' -6.828225' 0.0000000' LOCAL 'SATELLITI' -6.828225' 0.0000000' LOCAL 'SATELLITI' -6.828225' 0.0000000' 'LOCAL'' SATELLITI' -6.828225' 0.000000' 'LOCAL''' SATELLITI' -6.828225' 0.000000' 'LOCAL''' SATELLITI' -6.828225' 0.000000' 'LOCAL''' 'SATELLITI' -6.828225' 0.000000' 'LOCAL''' 'SATELLITI' -6.828225' 0.000000' 'LOCAL''' 'SATELLITI' -6.828225' 0.000000' 'LOCAL''' 'SATELLITI' -6.828225' 0.000000' 'LOCAL''' SATELLITI' -6.828225' 0.000000' 'LOCAL''' 'SATELLITI' -6.828225' 0.000000' 'LOCAL''' -9.99123''' NONE'' '2.092690' '''''''''''''''''''''''''''''''''''	★ Find Case sa 28T05:52:54' / Observation mode 29T02:23:52' / Observation mode 29T02:23:52' / Observation end ' / Time system 0000000E+04 / MJD zero point f 0000000E+04 / MJD zero point f 0000000E+04 / Basic Time offse ' / default 17748552E+08 Basic Time clock 719034E-18 Basic Time clock 719034E-18 Basic Time clock 0000000E+00 / Correction appli ' / default 191316E-01 Basic Time clock ' / default 0000000E+04 / Time assigned by ' / Time assigned by ' / default 0000000E+04 / HTMA focal lengt 0000000E+04 / HRMA focal lengt 0000000E-05 / default 0000000E-05 / default 0000000E+04 / HRMA focal lengt 0000000E-05 / default 0000000E-05 / default	<pre>ensitive? No rt date date date or times t (s) rate (s / VCDUcount) drift (s / VCDUcount^2) ed to Basic Time rate (s barycenter/local) clock m) xis pos (num) stage pos (num) finition t time fied target RA fied target Dec</pre>							

All the information of your observation are contained in the header of the fits file. You can visualize it by using the FTOOL command fv

Image: Summary of acisf07302_000N001_evt1.fits in /RossiFumi/users/torresi/4C19.44/chandra/7302/se

naex	Extension	Туре		I	Dimen	sion						Vie	W		
_ 0	Primary	Image	e		0	1				Head	ler 🛛	Image	;	Tabl	e
_ 1	EVENTS	Binar	y 2	20 col	s X 27	77216	rows	;		Head	ler H	list I	Plot	All S	Sele
2	GTI	Binar	y	2 0	ols X	1 row	s		Ī	Head	ler H	list 📕	To t	All S	Sele
		000		🔀 fv: Bi	nary Table o	of acisf07302_	000N001_	evt1.fits[1] in /Ros	siFumi/use	ers/torresi/4C19	0.44/mandra/7	302/secondary/		=
		File Edit	Tools												_
		Select All Invert	_ ume 1D S Modify	_ cca_ia 11 Modify	node_id 11 Modify	expno 1J Modify	11 pixel Modify	11 pixel Modify	_ taetx 11 pixel Modify	11 pixel Modify	detx 1E pixel Modify	dety 1E pixel Modify	× 1E pixel Modify	_ y 1E pixel Modify	
		1	2.599123745351E+08	7	3	293	984	391	4901	2093	4.858813E+03	4.237318E+03	2.541800E+05	-1.430559E+05	1
		2	2.599123745351E+08	7	2	293	591	474	4508	2176	4.466738E+03	4.154643E+03	2.536133E+05	5 -1.429493E+05	1
		3	2.599123745351E+08	7	3	293	1008	552	4925	2254	4.882676E+03	4.076576E+03	2.541747E+05	-1.428487E+05	4
			2.599123743551E+08 2.599123753762E+08	7	1	293	95	431	4304	2309	4.282277E+03 3.971257E+03	4.197373E+03	2.52988E+05	-1.427781E+05	1
		6	2.599123762172E+08	7	2	295	520	557	4437	2259	4.395667E+03	4.071814E+03	2.534944E+05	-1.428426E+05	1
		7	2.599123770582E+08	7	2	296	541	441	4458	2143	4.416224E+03	4.186880E+03	2.535506E+05	5 -1.429908E+05	1
		8	2.599123770582E+08	7	2	296	531	474	4448	2176	4.406479E+03	4.154062E+03	2.535292E+05	-1.429485E+05	4
		9	2.599123770582E+08	7	3	296	989	511	4906	2213	4.864095E+03	4.116981E+03	2.541585E+05	-1.429008E+05	4
		11	2.599123770582E+08 2.599123778992E+08	7	1	295	4/1	493	4388	2257	4.346301E+03 3.992845E+03	4.073634E+03 4.135629E+03	2.534261E+05	-1.428449E+05	1
		12	2.599123795813E+08	7	2	299	725	594	4642	2296	4.599758E+03	4.033951E+03	2.537699E+05	-1.427938E+05	1
		13	2.599123795813E+08	7	3	299	858	628	4775	2330	4.733125E+03	4.000127E+03	2.539477E+05	-1.427502E+05	1
		14	2.599123795813E+08	7	0	299	14	639	3931	2341	3.889811E+03	3.989590E+03	2.527703E+05	-1.427368E+05	1
		15	2.599123804223E+08	7	1	300	458	468	4375	2170	4.333020E+03	4.159923E+03	2.534282E+05	5 -1.429560E+05	1
		16	2.599123804223E+08	7	1	300	461	469	4378	2171	4.336413E+03	4.158963E+03	2.534327E+05	-1.429548E+05	4
		17	2.599123804223E+08	7	2	300	611	604	4528	2306	4.486265E+03	4.024730E+03	2.536094E+05	-1.427820E+05	4
		18	2.599123804223E+08	7	1	300	281	634	4198	2336	4.156607E+03	3.994792E+03	2.531430E+05	-1.427435E+05	4
		20	2.599123804223E+08 2.599123804223E+08	7	0	300	169	635	4086	2337	4.0446416+03	3.993677E+03	2.529069E+05 2.529757F+05	-1.427423E+05	ł
		21	2.599123812634E+08	7	2	301	667	502	4584	2204	4.542446E+03	4.126568E+03	2.537121E+05	-1.429131E+05	t
		22	2.599123812634E+08	7	1	301	439	533	4356	2235	4.314266E+03	4.095672E+03	2.533867E+05	-1.428733E+05	1
		23	2.599123812634E+08	7	1	301	326	633	4243	2335	4.201720E+03	3.995774E+03	2.532060E+05	-1.427447E+05	1
				7	0	302	70	517	3987	2219	3.946417E+03	4.111916E+03	2.528783E+05	-1.428942E+05	I
		24	2.599123821044E+08	· · ·	-						2.0701008.03	4 0407968.03	9 5200775.05	1 4001400.05	
		24 25	2.599123821044E+08 2.599123821044E+08	7	0	302	102	579	4019	2281	3.970102E+03	4.0497002403	2.3250775+03	-1.428143E+05	ų – – – – – – – – – – – – – – – – – – –
		24 25 26	2.599123821044E+08 2.599123821044E+08 2.599123829454E+08	7	0	302 303	102	579 434	4019 3995	2281 2136	3.953673E+03	4.194752E+03	2.529081E+05	-1.428143E+05	1
		24 25 26 27	2.599123821044E+08 2.599123821044E+08 2.599123829454E+08 2.599123829454E+08	7 7 7 7 7	0	302 303 303	102 78 769	579 434 593	4019 3995 4686	2281 2136 2295	3.953673E+03 4.644235E+03	4. 045706E+03 4. 194752E+03 4. 035675E+03	2.529077E+03 2.529081E+05 2.538323E+05	-1.428143E+05 -1.430008E+05 -1.427960E+05	

Main steps in *Chandra* data analysis

- Download data from a public archive
- □ Visualize the X-ray data
- □ Reduce the X-ray (*Chandra*) data
- Specific applications: how to create a radio/X-ray contour for an extended source

Chandra data reduction

CIAO	
Introduction	>
Download CIAO	>
Data Analysis	>
Documentation	>
Sherpa (Modeling and Fitting	a) >
ChIPS (Plotting Package)	>
Scripting in CIAO	>
Data Products	>
PSF Central NEW	>
Workshops	>
CXC Links	>
CXC HelpDesk	
Site Map	
CIAO on social media f Y Q ⁺ 🐻 🔊	

Science Threads

WHAT'S NEW | WATCH OUT Top | All | Intro | Data Prep | Imag | Imag Spec | Grating | Timing | psf | TTT || ChIPS | Sherpa | Proposal | PSF Central

All threads

A list of all the threads on one page.

Introduction UPDATED

Beginners should start here. The Introductory threads provide an overview of the main components (GUI applications, parameter files) and concepts (the Data Model, filtering) in the CIAO data analysis software.

Data Preparation UPDATED

When Chandra data goes through <u>Standard Data Processing</u> (SDP), the most recently available calibration is applied to it. Since this calibration is continuously being improved, one should check whether there are newer files available. Similarly, some science decisions are made during SDP; every user has the option to reprocess the data with different parameters.

Imaging UPDATED

The Imaging threads cover a wide range of topics that include source detection, creating exposure maps and normalized images, and calculating image statistics. How to create color images for publication is addressed, as well as merging data from multiple observations.

Imaging Spectroscopy

After extracting source and background PI or PHA spectra from an imaging observation, the appropriate response files (<u>ARF</u>, <u>RMF</u>) are created so that the data may be modeled and fit. In the case of multiple or extended sources, a weighted ARF and RMF are built for the spectral analysis.

Scientific files Housekeeping files

Scientific files Housekeeping files

- removal of hot pixels or afterglows acis_run_hotpix
- creation of a new event file acis_process_events
- run *destreak* in case the ACIS-S4 chip (ccd_id=8) has been used
- filtering for bad grades and application of *Good Time Intervals* (*GTI*)
- creation of the background light curve

All steps needed to reprocess data in one command using the tool **chandra_repro**

- punlearn chandra_repro
- chandra_repro indir=14990 outdir=14990_new check_vf_pha=yes verbose=3

where check_fv_pha=yes if DATAMODE=vfaint, otherwise =no

Cleaned event files

Create an image with binning=1 (original scale 1 pix=0.492") in the 0.5–7 keV band (and selecting only good data)

 dmcopy "14990_new/acisf14990_repro_evt2.fits[EVENTS] [grade=0,2,3,4,6,status=0,energy=500:7000][bin X=1,Y=1]" 14990_new/ obs14990_057keV_repro_evt2_bin1.fits clobber+

Filtering & Binning

Energy filter:

punlearn dmcopy

dmcopy "acisf00827_repro_evt2.fits[energy=300:7000]" evt_repro_0.3_7.0keV.fits

Filtering & Binning

Spatial binning:

dmcopy "evt_repro_0.3_7.0keV.fits[bin x=::4,y=::4]" evt_repro_0.3_7.0keV_binsz4.img

DS9

opens both event files (using the X,Y info) and images

DS9

opens both event files (using the X,Y info) and images

Most important information that can be obtained from an image:

- **Detection** (calculate the source counts and verify if this number is "in excess" with respect that of the background (alternatively: due to background fluctuations)

- **Morphology** (the source is pointlike or extended? obtain and fit a radial profile)
- X-ray **counterparts** of structures seen in other wavebands

It is possible to improve the image look

smoothing

Smoothing an image means to substitute the value of each pixel for the value obtained by weighting the pixels nearby with a given function that generally is a Gaussian

see also XMM tutorial...

A light curve is the plot of the flux of a source versus time. It shows if and how the flux of the source varies during a certain time. The variability of a source can manifest on different time scales

How to extract a lightcurve

1) select a source and background region

2) identify the ccd

> punlearn dmstat

> dmstat "acisf00953N003_evt2.fits[sky=region(src1.reg)][cols ccd_id]"

3) extract the lightcurve (background subtracted)

```
>punlearn dmextract
>pset dmextract infile="acisf00953N003_evt2.fits
[ccd_id=3,sky=region(src2.reg)][bin time= : : 2000]"
>pset dmextract outfile="src_sub_lc.fits"
>pset dmextract bkg="acisf00953N003_evt2.fits
[ccd_id=3,sky=region(bkg.reg)]"
>pset dmextract opt="ltc1"
>dmextract
```

How to extract a lightcurve

1) select a source and background region

2) identify the ccd

> punlearn dmstat

> dmstat "acisf00953N003_evt2.fits[sky=region(src1.reg)][cols ccd_id]"

3) extract the lightcurve (background subtracted)

```
>punlearn dmextract
>pset dmextract infile="acisf00953N003_evt2.fits
[ccd_id=3,sky=region(src2.reg)][bin time= : : 2000]
>pset dmextract outfile="src_sub_lc.fits"
>pset dmextract bkg="acisf00953N003_evt2.fits
[ccd_id=3,sky=region(bkg.reg)]"
>pset dmextract opt="ltc1"
>dmextract
```

There are several ways to visualize a light curve. Here are two examples:

Chips provided by CIAO

The ftool Icurve

A light-curve can be built in different temporal bins, e.g. if the observation is 10³s long, it is possible to extract a light-cuve with 10 bins of 100s, or 100 bins of 10s. The longer the bin the lower the temporal resolution but higher the S/N

To establish if a source varied during the observation we can apply the

- **c**_i observed counts in every temporal bin I;
- <c> average count during the observation;</t>
- $\boldsymbol{\sigma}_i$ Poissonian error;
- v = n-1 degrees of freedom.

Compute the null hypothesis probability that the source is not varied this test should be repeated for several temporal bins

Extract source and background spectra

ds9 nomefile

Region → File Format → CIAO → File Coordinate system → Physical

Choice of source and background region **Src**: if pointlike source, based on the encircled energy fraction (EEF) **Back**: source-free region, large enough to be representative of the 'real' background

How to obtain the spectrum of the source (and background): selection of the extraction region

Image deg			1
Fåe Edit View Frame Bin Zoom Scale Color Region CS Analysis H	telp	File Edit Color Width Property F	ont Analysis
lie evt_repro_0.3_7.0keV.fits[EVENTS] Soject 3C 219 VCS fhysical X Y Region ramp X Y O Get Information		Number 1 Text	:56.990 fk5
file edit view frame bin z Shape zoom in zoom out zoom fit zoom 1/0 Composite Ragion Instrument FOV Template	Circle Zoom 8 Ellipse Box	Apply	Close
Color Width Properties Font	Polygon Line Vector Projection Segment		
Centroid Move to Front Move to Back	Text Point		
Select All Contro Select None Invert Selection	ol-A Ruler Company		
Delete Selected Regions Delete All Regions	Annulus Elliptical Annulus Box Annulus		
New Group Groups	Panda Elliptical Panda Box Panda		
List Regions Load Regions Save Regions	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11		
Region Parameters	- 1 Contraction (1997)		

How to obtain the spectrum of the source (and background): bkg extraction region

- one or multiple region(s) in the field;
- on the same ccd;
- free from field sources;
- save it as bkg.reg (remember: format=CIAO; coord. system=physical)

http://cxc.cfa.harvard.edu/ciao/PSFs/psf_central.html

To extract the spectrum of a *pointlike* source...

- -> punlearn **specextract**
- -> pset specextract infile="acisf00547N002_evt2.fits[sky=region(src.reg)]"
- -> pset specextract outroot=prova
- -> pset specextract bkgfile="acisf00547N002_evt2.fits[sky=region(bkg.reg)]"
- -> pset specextract weight=no
- -> pset specextract correct=yes
- -> pset specextract asp=pcadf089424455N002_asol1.fits
- -> pset specextract mskfile=acisf00547_000N002_msk1.fits
- -> pset specextract badpixfile=acisf00547_000N002_bpix1.fits
- -> pset specextract grouptype=NUM_CTS binspec=15
- -> pset specextract verbose=2
- -> specextract

specextract runs the following CIAO tools

- dmextract: to extract source and (optionally) background spectra. This tool also creates the WMAP used as input to mkacisrmf.
- <u>mkarf</u>: to create ARF(s).
- arfcorr: to apply an energy-dependent point-source aperture correction to the source ARF file.
- mkrmf or mkacisrmf: to build the RMF(s), depending on which is appropriate for the data and the calibration; see the Creating ACIS RMFs why topic for details.
- <u>dmgroup</u>: to group the source spectrum and/or background spectrum.
- <u>dmhedit</u>: to update the BACKFILE, RESPFILE and ANCRFILE keys in the source and background spectrum files.

Encircled Energy Fraction (EEF)

About 90% of photons coming from a pointlike source fall within 1"@1.5 keV

...to extract the spectrum of an *extended* source

- -> punlearn specextract
- -> pset specextract infile="acisf00547N002_evt2.fits[sky=region(src.reg)]"
- -> pset specextract outroot=prova
- -> pset specextract bkgfile="acisf00547N002_evt2.fits[sky=region(bkg.reg)]"
- -> pset specextract weight=yes The ARF should be averaged over the pixels used for
- -> pset specextract correct=no the spectral extraction
- -> pset specextract asp=pcadf089424455N002_asol1.fits
- -> pset specextract mskfile=acisf00547_000N002_msk1.fits
- -> pset specextract badpixfile=acisf00547_000N002_bpix1.fits
- -> pset specextract grouptype=NUM_CTS binspec=15
- -> pset specextract verbose=2
- -> specextract

specextract runs the following CIAO tools

- <u>dmextract</u>: to extract source and (optionally) background spectra. This tool also creates the WMAP used as input to mkacisrmf.
- <u>sky2tdet</u>: to create the WMAP input for mkwarf.
- <u>mkwarf</u>: to create weighted ARF(s).
- mkrmf or mkacisrmf: to build the RMF(s), depending on which is appropriate for the data and the calibration; see the Creating ACIS RMFs why topic for details.
- dmgroup: to group the source spectrum and/or background spectrum.
- <u>dmhedit</u>: to update the BACKFILE, RESPFILE and ANCRFILE keys in the source and background spectrum files.

The response matrix is composed by

1. The *Redistribution Matrix File (RMF):* associates to each instrument channel (I) the appropriate photon energy (E)

2. The *Auxiliary Response File (ARF):* includes information on the effective area, filter transmission and any additional energy-dependent efficiencies, i.e. **the efficiency of the instrument in revealing photons**

The quantum efficiency (QE) is the *fraction of incident photons registered by a detector.* For an ideal detector, this is 100%. In reality, however, no detector is 100% efficient. If, for instance, the detector is 70% efficient, then 100 arriving photons would result in 70 counts.

The combination of RMF and ARF produces the input spectrum, convolved with the telescope effective area and detector efficiencies versus energy

File Edi	t Tools	RMF		Help
	CHANNEL	E_MIN	E_MAX	
Select	1E	1E	1E	
🗌 Ali	channel	keV	keV	
Invert	Modify	Modify	Modify	
1	1.000000E+00	1.460000E-03	1.460000E-02	$\neg 4$
2	2.000000E+00	1.460000E-02	2.920000E-02	
3	3.000000E+00	2.920000E-02	4.380000E-02	
4	4.000000E+00	4.380000E-02	5.840000E-02	
5	5.000000E+00	5.840000E-02	7.300000E-02	
6	6.000000E+00	7.300000E-02	8.760000E-02	
7	7.000000E+00	8.760000E-02	1.022000E-01	
8	8.000000E+00	1.022000E-01	1.168000E-01	
9	9.000000E+00	1.168000E-01	1.314000E-01	
10	1.000000E+01	1.314000E-01	1.460000E-01	
11	1.100000E+01	1.460000E-01	1.606000E-01	
12	1.200000E+01	1.606000E-01	1.752000E-01	
13	1.300000E+01	1.752000E-01	1.898000E-01	
14	1.400000E+01	1.898000E-01	2.044000E-01	
15	1.500000E+01	2.044000E-01	2.190000E-01	
16	1.600000E+01	2.190000E-01	2.336000E-01	
17	1.700000E+01	2.336000E-01	2.482000E-01	
18	1.800000E+01	2.482000E-01	2.628000E-01	
19	1.900000E+01	2.628000E-01	2.774000E-01	
20	2.000000E+01	2.774000E-01	2.920000E-01	
	-			
				\geq
Go to:	Edit	t cell: 0.219		

File Edit	Tools	ARF		Hel
	ENERG_LO	ENERG_HI	SPECRESP	
Select	1E	1E	1E	
All	keV	keV	cm**2	
Invert	Modify	Modify	Modify	
1	2.200000E-01	2.300000E-01	9.414584E+01	
2	2.300000E-01	2.400000E-01	1.119709E+02	
3	2.400000E-01	2.500000E-01	1.309653E+02	
4	2.500000E-01	2.600000E-01	1.518642E+02	
5	2.600000E-01	2.700000E-01	1.716482E+02	
6	2.700000E-01	2.800000E-01	1.922011E+02	
7	2.800000E-01	2.900000E-01	4.741680E+01	
8	2.900000E-01	3.000000E-01	2.284590E+00	
9	3.000000E-01	3.100000E-01	5.144246E+00	
10	3.100000E-01	3.200000E-01	1.563580E+01	
11	3.200000E-01	3.300000E-01	2.251595E+01	
12	3.300000E-01	3.400000E-01	3.011008E+01	
13	3.400000E-01	3.500000E-01	3.743014E+01	
14	3.500000E-01	3.600000E-01	4.385400E+01	
15	3.600000E-01	3.700000E-01	4.954287E+01	
16	3.700000E-01	3.800000E-01	5.625348E+01	
17	3.800000E-01	3.900000E-01	6.431229E+01	
18	3.900000E-01	4.000000E-01	7.319862E+01	
19	4.000000E-01	4.100000E-01	7.713167E+01	
20	4.100000E-01	4.200000E-01	8.444775E+01	
				\geq
Go to:	Edit	t cell: 0.42		

To combine spectra of the same source from different observations

optional

- -> punlearn combine_spectra
- -> pset combine_spectra src_spectra=obs1843.pi,obs1842.pi
- -> pset combine_spectra outroot=spec_combined
- -> pset combine_spectra src_arfs=...
- -> pset combine_spectra src_rmfs=...
- -> pset combine_spectra bkg_spectra=...
- -> pset combine_spectra bkg_arfs=...
- -> pset combine_spectra bkg_rmfs=...
- -> pset combine_spectra bscale_method=... options: asca/time/counts
- -> combine_spectra verbose 2

In case of long list of files to bu summed up: @namefile Example: pset combine_spectra src_spectra=@list_spectra

Pileup

http://cxc.harvard.edu/ciao/download/doc/pileup_abc.pdf Use webpimms to estimate the pileup of one observation http://cxc.cfa.harvard.edu/toolkit/pimms.jsp

Two or more photon are collected during the same read-out in the same pixel, and are read as a single event (with higher energy)

 \rightarrow loss of information from these events

 \rightarrow distortion in the observed spectrum

Readout streak: the streak photons are clocked out in the wrong row, hence they are assigned the incorrect CHIPY value

Pileup two major effects are:

ENERGY MIGRATION photon energies sum to create a detected event with higher energy

GRADE MIGRATION event grades migrate towards values inconsistent with real photon events.

Avoid/limit pileup: (a) fasten the reading of the CCD (using the subarray option) (b) extract the spectrum from an annulus centered on the source (hence removing the "inner part" of the source) Pileup mitigation: use an XSPEC – pileup model

Main steps in *Chandra* data analysis

- Download data from a public archive
- □ Visualize the X-ray data
- □ Reduce the X-ray (*Chandra*) data
- Specific applications: how to create a radio/X-ray contour for an extended source

> ds9 X-ray_image radio_image

Frame → match frames → WCS

-0.0011 0.0014 0.0065 0.016 0.037 0.077 0.16 0.32 0.63

> ds9 X-ray_image radio_image

-0.0011 0.0014 0.0065 0.016 0.037 0.077 0.16 0.32 0.63

$\begin{array}{l} \text{Analysis} \rightarrow \text{Contour parameters} \\ \rightarrow \text{File} \\ \rightarrow \text{Load contours} \end{array}$

Not only radio/X...

Fig.4. Superposition of the *Chandra* soft X-ray (<2 keV) contours on an *HST* image taken through a linear ramp filter at redshifted [OIII] λ 5007. The sign "**x**" indicates the centre of the hard X-ray source, north is up, east to the left. The X-ray image was smoothed with a Gaussian of FWHM ~ 6 pixels. The contours correspond to four logarithmic intervals in the range 1-60% of the peak flux.

