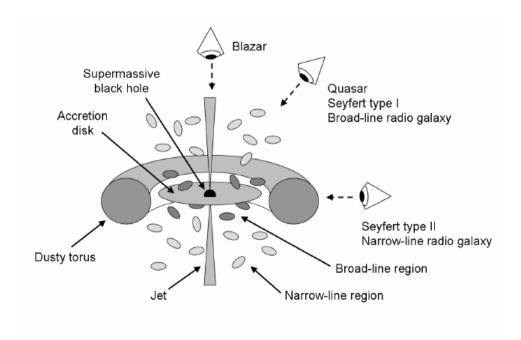

Spectral study at different epochs of the Seyfert 1.5 galaxy NGC 4151



AIM OF THIS LAB

X-ray spectra taken at two different epochs with XMM-Newton

Inner regions...

Global view of Seyferts...

PLAN – Spectral study

Goals:

- 1) Obtain a best-fit model of the XMM-Newton/EPIC/pn spectrum in the 2-10 keV band of one of the two epochs and infer how far from the SMBH the FeKα is produced
- 2) Test the same best-fit model on the other observation and check which parameters are different and the origin of the variability (i.e. absorption, intrinsic, ...)
- 3) Optional: test relativistic models for the FeKα and reflection component

First steps

1) Extract image, light-curve and spectrum of the source, and fit the "hard" X-ray (E=2-10 keV) spectrum

- 1a) Using a simple power-law model, try to identify the major spectral components (partial covering, reflection, emission features)
- 1b) Model the FeKα emission line
- 1c) use self-consistent reflection models (pexmon,...)

Second phase.....

- 2) Use the best-fit model obtained in the first case and test it on the second observation;
- 2a) check if the model is physically motivated → Pinpoint the variable components between the two observations;
- 2b) infer a scenario able to globally explain what is observed in the two datasets.

Optional.....

Use relativistic kernel on the reflection component and check if the results are significantly different from what obtained with the simple reflection component

NGC 4151

References:

Paper: De Rosa et al. 2007, A&A, 463, 903

Beuchert et al. 2017, A&A, 603, A50

Source INFOs

Classification: Seyfert 1.5

z=0.0033

 $M \sim 3.7 \times 10^7 M_{\odot}$ (Onken et al. 2014)

 $N_{h,qal}$ =2.5x10²⁰ cm⁻² (Kalberla et al. 2005)