Galaxy evolution and environment: lessons from MUSE and perspectives for MAVIS

Alessia Moretti

M. Gullieuszik, B. Poggianti, B. Vulcani, D. Bettoni & the GASP team

AO2020, Rome 17-19 Feb

Galaxy evolution and environment: observed properties

→ morphology-density relation (and morphology-radius relation)

(Dressler 1980, Fasano+2015)

What drives the morphological evolution of galaxies?

AO2020, Rome 17-19 Feb

Galaxy evolution and environment: observed properties

 \rightarrow morphology-density relation (and morphology-radius relation)

(Dressler 1980, Fasano+2015)

 \rightarrow SF efficiently suppressed in clusters (Guglielmo+2015)

The hard life of a galaxy in a cluster

Quenching related to gas supply/removal

- \rightarrow RPS, strangulation (fast and slow gas-only removal)
- \rightarrow mergers, tidal interaction (gas and stars)
- \rightarrow internal mechanisms (AGN, stellar winds)

AO2020, Rome 17-19 Feb

GASP and the ram-pressure stripping w. MUSE

Gallery from M. Gullieuszik

AO2020, Rome 17-19 Feb

GASP and the ram-pressure stripping w. MUSE

Technical details:

Pix size=0.2", PSF~1" \Rightarrow 1 kpc scale properties at our redshift

1'x1' FoV, i.e. 60x60 kpc² at our redshift

45 **G**

GASP results

 \rightarrow RPS is effectively acting on cluster galaxies quenching the SF

Is RPS effective only at these (low) redshift?

AO2020, Rome 17-19 Feb

GASP results

 \rightarrow RPS is effectively acting on cluster galaxies quenching the SF

 \rightarrow Big (~1kpc) complexes of SF regions are found in the tails - smaller sizes possibly implied by local gx scaling relations w. H_a luminosity

Poggianti+2019

AO2020, Rome 17-19 Feb

Ramatsoku+2019

GASP results

 \rightarrow RPS is effectively acting on cluster galaxies quenching the SF

 \rightarrow Big (1kpc) complexes of SF regions are found in the tails

Moretti+2018,2020

 \rightarrow Multiwavelength datasets confirm HI and H2 gas tails

Is SF acting on such big scales, or do we need better resolution?

AO2020, Rome 17-19 Feb

Still open questions

What is the effect of the environment on

- morphological evolution ?
- size evolution/mass growth ?
- quenching mechanisms ?
- star formation ?

MAVIS science cases

Morphological evolution:

- distinguish E from S0
- are cluster and group/field S0 coming _ from different physical mechanisms?

MAVIS imaging (30"x30") in **B** can do that for a large sample of cluster and groups environment at redshift 0.4-1 (with pre-selection on pre-existing surveys)

AO2020, Rome 17-19 Feb

AO2020, Rome 17-19 Feb

MAVIS science cases

→ Size/mass evolution:

- Build the correct progenitor-descendant tree in measuring the size evolution, i.e. who are the local counterpart of high-z supermassive gx?
- How significant/strong is the mass size evolution?

MAVIS imaging in R/I can map V rest-frame at 0.3-0.6 + high spatial resolution allow unprecedented size measurement

MAVIS science cases

→ Star forming clumps:

- SF clumps physical properties are related to environment?
- How are they distributed within a big complex seen through the PSF?
- Do they evolve with time?

[**BV-band imaging** at intermediate (0.5-1) $z \rightarrow UV$ restframe! W. 25 mas \rightarrow ~200 pc

At low z map SF regions on tens of pc scale]

MAVIS science cases

→ RPS at intermediate redshift:

 Is the RPS important also at redshift ~0.3-0.7, i.e. when cluster form and many more galaxies are infalling?

MAVIS IFU can map **OII**, H_{β} and **OIII** for a significant sample of galaxies preselected from McPartland+2016 (0.4), RELICS survey (0.2-1), ESO VLT CLASH (0.2-0.5)

[2 pointings at z~1, 5 pointings at z~0.4, w. IFU 3"x3"; all lines out to 0.6 or 0.8 depending on reddest wavelength, mapping ~100 pc scale]

1 gx in A2744@z~0.3 w. MUSE-WFM ~5 kpc res

Conclusions

 \rightarrow MUSE has allowed a huge step forward in the galaxy evolution field at low-intermediate z

\rightarrow Many open questions can be solved by MAVIS!

