AO observations of AGNs: from the present to ERIS and MAVIS

Giovanni Cresci INAF – Arcetri A. Marasco, F. Mannucci, A. Marconi, M. Perna, M. Brusa, G. Tozzi, ...

The need for AGN feedback

Stellar feedback can't explain reduced efficiency in massive galaxies (e.g. Hopkins+06, Croton+06, Murray+05, Menci+08 ...)

Bimodality in color mag or M* diagram (e.g. Blanton +2003...): Red sequence, Blue Cloud: *what makes galaxies red and dead?*

Many theoretical predictions, but still few observations of feedback effects on host galaxies...

Galaxy formation efficiency

Searching for feedback

- Maximum feedback effect expected at z~1-3
- 0.5" seeing → ~4 kpc: outflows usually unresolved except few exceptional cases

Cresci+2015a

Widespread outflows at high-z, but unresolved

Harrison et al. (2015) – KASHz survey 82 x-ray selected AGNs with KMOS (see also e.g. Forster-Schreiber+15)

High-z outflows with SINFONI+NGS AO

Brusa et al. 2016

XID5395 at z=1.5

- v_{out}=1300 km/s
- R_{out}=4.3 kpc / 0.5"
- Mdot=45 M_{\odot}/yr

Limited to the few sources close to a bright enough star... only 1 in COSMOS with our selection!

Perna et al. 2015

MIRO20581 at z=2.45

- v_{out}=1600 km/s
- R_{out}=4.8 kpc / 0.6"
- Mdot=190 M_{\odot}/yr

High-z outflows with SINFONI+LGS AO

- PI V. Mainieri (ESO)
- Survey for Unveiling the Physics and the Effect of Radiative feedback
- An ESO large program, 280 hrs in 2 years
- ~7 hrs/obj in 40 X-ray selected AGNs at z=2.3
- observing Large range in $L_{\scriptscriptstyle BOL},\,L_{\scriptscriptstyle edd},$ Type 1 and Type 2, $N_{\scriptscriptstyle H}$
- LGS-AO, H+K bands: both outflows from [OIII] and SF from H α
- Explore outflow power and demography as a function of AGN & host properties in unbiased sample

BUT:

- the program started in service mode, with very low observation rate
- we changed in vistor mode, but without scheduling optimization for AO
- targets observed in no-tip tilt mode: resolution obtained FWHM~0.2"-0.4"

High-z outflows with SINFONI+LGS AO

AGN outflows are multi-scale and multi-phase

Different observational tracers

- Highly ionized accretion disk winds (X-rays highly ionized Fe lines) – UFOs): R<1 kpc; v ~ 0.01-0.3 c
- Cold molecular gas winds (mm and sub-mm, CO, OH): R~1-10 kpc; v~300-1000 km/s
- Ionized and atomic outflows (optical/NIR): R~1-10 kpc v~300-2000 km/s

Connecting UFOs with large scale outflows

Are large scale outflows energy conserving?

Link between pc-scale and kpc-scale but till now only few sources...

Nardini & Zubovas 2018 (see also Tombesi+15 Nature, Feruglio+15, Veilleux+17, Feruglio+17)

Connecting UFOs with large scale outflows with MUSE NFM

Close encounters of the third kind: P103 proposal for MUSE NFM+AO (PI Cresci) to resolve the large scale ionised outflows in 3 bright UFO hosts :

50% completed, 2 sources observed MR2251 and PG1126

PG1126 (H=11.9) PSF images from Ha (red) and Hb (blue) BLR

> Corrected core (FWHM ~ 50mas ~ 70 mas) Halo (FWHM ~ 600 mas)

Connecting UFOs with large scale outflows with MUSE NFM

Marasco et al. 2020

A large scale outflow and an intriguing nebula in MR2251

Narrow component

Outflow component

Marasco et al. 2020

Connecting UFOs with large scale outflows with MUSE NFM

Preliminary results seem to show better agreement with a momentum conserving scenario for the two AO QSO

Marasco et al. 2020

The future: from SUPER to HIPER

(High resolution Investigation of Feedback Processes with ERis)

Main advantages of ERIS:

- Higher AO correction
- Larger sky coverage
- R=8000 resolution available for better kinematic studies and BLR/narrow Ha decomposition

The future: star formation in outflows

Star formation in clumpy, dense molecular gas in outflow claimed as a new mode of star formation (e.g. Ishibashi & Fabian 2013, Zubovas & King 2014)

First claims in Maiolino+17 (Nature), Gallagher+18, Belfiore+ in prep, Mingozzi+ in prep.

Hard to detect because:

- SF dominated excitation hidden in the AGN emission → high spatial resolution and high sensitivity needed
- stellar absorption features from young stars have to be detected below the bright line emission → higher spectral resolution than MUSE needed

Perfectly suited for the task! R~12000; 20 mas FWHM

Not only outflows: the hunt for binary BH

- Fundamental prediction of hierarchical cosmology: galaxies and SMBH merge
- Extensive population of multiple SMBHs in-spiraling after a merger event
- Most BH are expected to be active (Steinborn et al 2016)
- However, not much evidence for binary SMBHs

Binary BH system important for:

- test the models of SMBH formation
- physics of BH merging to compare with GW detection
- determination of the stochastic GW background at low frequencies (Sesana+08, Goulding+19)
- Sub kpc systems especially important!

Not only outflows: the hunt for binary BH

Current situation:

- Local merging galaxies: a few systems, d=0.5-5 kpc
- Binary AGNs in **SDSS** (Hou+19): many at 3-10 arcsec \rightarrow d > few kpc
- HST imaging: (Komossa+09, Civano+10, Fu+12, Gouldling+19) few systems, d>0.5" = 2-10 kpc
- X-ray/Chandra (Civano+10, Fabbiano+11, Comeford+15, Hou+19): many at 1 arcsec, d>2kpc
- Peculiar [OIII] emission line profile (Wang+09, Liu+10, Smith+10, Green+11, Shen+11, Fu+12, Mullaney+13), a few systems later confirmed
- Near-IR AO: mostly imaging (Fu+11, Medling+11, U+13,19, Imanishi+14, Koss+18, Iwasawa+18, Müller-Sánchez+18), few systems, d>200pc
- Radio VLBI/VLBA: (Rodriguez+01, Burke-Spolaor+11, An+18): rare, few systems, 1 system at 7pc

50 mas resolution \rightarrow

- 20 pc at z=0.02
- 420 pc at z=2
- $\Delta v \simeq 30-140$ km/s for 10^8 M_{\odot}

Pilot study: HST imaging of AGNs in COSMOS

Mannucci et al. in prep.

Other preselections: Line profile? Fu+12, Mullaney+13; GAIA varstrometry? Hwang+19

Conclusions

- AGN observations with AO already a reality
- However, full AO potential not realized yet
 - limited Strehl ratios and FWHM
 - limited to brightest sources due to sky coverage
 - limitation in the scheduling → hard to get data

- Forthcoming IFU system AO-fed in the NIR and Optical will open a new window in our understanding of AGN physics and their interplay with the host galaxy:
 - Detailed study of AGN accretion and outflows physics and their feedback on the hosts
 - from the peak epoch of SF and BH accretion to present
 - complementary to other facilities like JWST