A new software for astrometry and photometry in the AO era

Antonino Marasco (INAF-Arcetri)

In collaboration with Eline Tolstoy (Kapteyn-Groningen) Davide Massari (INAF-Bologna) ...et al.

A02020 - Roma - 18/02/20

We need high-precision astro/photo-metric measurements, but...

- PSFs are becoming complex, difficult to be described analytically
- PSFs varies across the an image in a way that it is difficult to predict a priori
- PSF reconstruction -> complex, time consuming. Need to be validated

We need high-precision astro/photo-metric measurements, but...

- PSFs are becoming complex, difficult to be described analytically
- PSFs varies across the an image in a way that it is difficult to predict a priori
- PSF reconstruction -> complex, time consuming. Need to be validated The community is aware of these issues: Laura Schreiber's talk Davide Massari's talk

Carmelo Arcidiacono's talk Andrea <u>Grazian's talk</u>

We need high-precision astro/photo-metric measurements, but...

- PSFs are becoming complex, difficult to be described analytically
- PSFs varies across the an image in a way that it is difficult to predict a priori
- PSF reconstruction -> complex, time consuming. Need to be validated

We need high-precision astro/photo-metric measurements, but...

- PSFs are becoming complex, difficult to be described analytically
- PSFs varies across the an image in a way that it is difficult to predict a priori
- PSF reconstruction -> complex, time consuming. Need to be validated

A possible solution

A software that

- A. extract purely *numerical* PSFs in different regions of the image
- B. use these PSFs to extract position and magnitude of all sources
- C. iterates A and B to improve on PSF models, astrometry and photometry

We need high-precision astro/photo-metric measurements, but...

- PSFs are becoming complex, difficult to be described analytically
- PSFs varies across the an image in a way that it is difficult to predict a priori
- PSF reconstruction -> complex, time consuming. Need to be validated

A possible solution

A software that

- A. extract purely *numerical* PSFs in different regions of the image
- B. use these PSFs to extract position and magnitude of all sources
- C. iterates A and B to improve on PSF models, astrometry and photometry

2 - SOURCE FINDER

Look for candidate stars in the residual image S/N based First estimate of position and fluxes Flag "isolated" stars

2 - SOURCE FINDER

Look for candidate stars in the residual image S/N based First estimate of position and fluxes Flag "isolated" stars

3 - ePSF MODELLING

based on Anderson & King 2000,2006 stacking isolated, high S/N stars on a fine grid multi-kernel smoothing re-centering

adapted from Anderson & King 2000

IMAGE FRAME

PSF FRAME

adapted from Anderson & King 2000

adapted from Anderson & King 2000

2 - SOURCE FINDER

Look for candidate stars in the residual image S/N based First estimate of position and fluxes Flag "isolated" stars

3 - ePSF MODELLING

based on Anderson & King 2000,2006 stacking isolated, high S/N stars on a *fine* grid multi-kernel smoothing re-centering

SUPERSTAR OUTPUTS

initial estimates for (x,y,mag)

final (x,y,mag) and corr.coefficients

- residuals (data-model)
- modelled sky background
- modelled sky noise
- initial (x,y) of all sources (1-0 map)
- final (x,y) of all sources (1-0 map)
- (x,y) of surces used to extract ePSF (1-0)

datacube (fits format) • ePSF in the various regions

images (fits format)

catalogues

SUPERSTAR vs DAOPHOT: synthetic images

SUPERSTAR vs DAOPHOT: synthetic images

SUPERIOR vs DAOPHOT: synthetic images

SUPERIOR vs DAOPHOT: synthetic images

SUPERIOR vs DAOPHOT: synthetic images

STAR vs **DAOPHOT**: synthetic images

STAC: vs DAOPHOT: synthetic images

SUPERIAL ON GEMS data (NGC 6681)

SUPERSTAR on GeMS data (NGC 6681)

SUPERSTAL on GeMS data (NGC 6681)

SUPERSTAR on GeMS data (NGC 6681)

Synergy with PSF-reconstruction

SUPERIOR takes as an input external PSFs (cubes) in fits format

Synergy with PSF-reconstruction

SUPERSIDE takes as an input external PSFs (cubes) in fits format

Synergy with PSF-reconstruction

SUPERATE takes as an input external PSFs (cubes) in fits format

See talk by Davide Massari

Work in progress

123040

1000

ACC:

600

466

300

200

Axis 0

SUPERSTAR on simulations

SUPERSTAR on real data

m15e→J2→v1.2.fite

core of a GC with GeMS H,J,K, different seeing and exp.time (collaboration INAF/LAM)

core of M15 with PISCES@LBT (with C. Arcidiacono)

840

Axiz 1

BOO

1000

400