

EEP

Passive galaxies in the early Universe The AO perspective

Paola Santini

INAF - Osservatorio Astronomico di Roma

<u>Collaborators</u>: **E. Merlin**, M. Castellano, A. Fontana, B. Magnelli, F. Fortuni, A. Grazian, D. Paris, L. Pentericci, S. Pilo, K. B. Schmidt, M. Torelli

"Astrofisica di frontiera con l'ottica adattiva italiana", Roma 17-19 Feb 2020

Outline

- Passive galaxies (what are they, why do we care, when did they appear...)
- Selection passive candidates at z>3
- Confirmation of their passive nature
- Physical properties
- Investigating the physics with AO
- Summary & conclusions

Further details in: Merlin+18: selection technique (GOODS-S) Santini+19: confirmation of the candidates Merlin+19: selection in the 5 CANDELS fields Santini+in prep: confirmation of the total sample + stellar MF

Introduction – Passive galaxies through cosmic time

Introduction – High z passive gal: a challenge for theoretical models

Theoretical models struggle to reproduce the observations (Fontana+09, Vogelsberger+14, Feldmann+16, Merlin+19, Cecchi+19, Valentino+19, ...)

The abundance of passive galaxies at different epochs is a powerful probe of the delicate interplay among the different physical processes responsible for their rapid assembly and for the abrupt shut-down of their SF activity (e.g. merger-driven starbursts, feedback, ..).

Selection – z>3 passive galaxy candidates in CANDELS

AO NIR imaging

Selection based on SED fitting assuming top-hat SFH with a probabilistic approach Will benefit from

- z>3
- H < 27
- SNR [Ks, IR1, IR2] > 1
- SED fitting with top-hat SFHs, BC03 w/ or w/o lines
- Probabilistic selection:
 - best solution with SFR=0
 - P_{best (passive)} > 30%
 - no $P_{i (star-forming)} > 5\%$

Field/Sample	Total	<i>z</i> > 3	$S/N_{z>3}$	Reference	
COSMOS	38671	3778	1525	4	
EGS	41457	4830	1775	13	
GOODS-N	35445	3953	1793	36	
GOODS-S	34930	5029	2884	33	
UDS	35932	4018	2540	16	
All fields	186435	21608	10517	102	

Merlin+19

Confirmation – How to confirm the passive nature?

Spectroscopical confirmation is hard and <u>very time demanding</u> with current instrumentation

- *Cimatti+04* : 1.6<z<1.9, 18<K<19, 3-16 hr with FORS2
- *Glazebrook+17* : z=3.713, K=22.4, 4 (H) 7 (K) hr with MOSFIRE
- Schreiber+18: 3<z<4, 22<~K<~24, 4–7 hr with MOSFIRE
- Forrest+19: z=3.493, K=20.97, 5 (H) 2.45 (K) hr with MOSFIRE
- Valentino+19: z=3.775, K=22.26, 8.6 hr with X-Shooter + z=4.012, K=21.9, 7.75 hr with MOSFIRE
- See also: Kriek+06,+09,+15, Gobat12, Onodera+12, Whitaker+13, Belli+14, van de Sande+16, Hill+16, ...

SXDS-27434

Confirmation – Use ALMA!

Exclude contamination from dusty galaxies by means of FIR/submm observations

ALMA archive: 41(/53) targets observed in Band 6 or Band 7

Only 1 detection (4 σ)

No >3 σ detections even in the stacks

ALMA flux measurements converted into (constraints on the) SFR

Confirmation - Validation of the passive solutions

VALIDATION OF INDIVIDUAL ROBUST CANDIDATES

ALMA predictions vs opt fit (SF-ing solutions at any redshift)

61% are robustly (\geq 3 σ) confirmed \rightarrow the SFing solutions of the optical fits are rejected by ALMA observations

The remaining sources are inconclusive (available ALMA data is not deep enough)

STATISTICAL VALIDATION OF THE WHOLE POPULATION

The stacks are on average consistent with being passive

Comparison with the location of the MS

- $\circ~$ 56% at least 1 σ below the MS
- $\circ~$ 24% at least 3 σ below the MS
- Stacking supports the passive nature of the entire sample

Properties – Sizes

average size

0.22 arcsec

(H band)

Merlin+19

Properties – Stellar masses

Properties – Number density

Properties – Contribution to the cosmic SFRD

Quite rare: 0.5% of z>3 galaxies

BUT

provide 5-10% of the cosmic SFRD at 3<z<8

(10-20x more active than average)

Extremely fast and efficient SF activity (short bursts) abruptly quenched (gas consumption and/ or effective feedback mechanisms)

What causes quenching in massive galaxies?

What causes quenching in massive galaxies?

• Deep resolved imaging and spectroscopic observations needed to study the stellar populations and the gas phases to disentangle among various quenching mechanisms

(when, where and how did quenching occur)

- morphology
- rotation curves
- metallicity gradients
- stellar populations
- Stellar feedback
- (iii) Cold gas does not form starsMorphological quenching
- gas phases (inflows/outflows/molecular gas reservoirs)
 - Magnetic field
- Why quiescent galaxies at high-z?
 - Extremely fast assembly and quenching
 - Shorter available timescales reduce uncertainties in their age and degeneracy between mass formation and mass assembly history

Man & Belli 18

The AO perspective – Resolved imaging

Simulated z~3 galaxies as seen in 3 hr by MICADO@E-ELT

Structural parameters and colour gradients accurately reconstructed

"with an accuracy of 2–5% for objects as faint as H~25 and half-light size of 0.2 arcsec."

Kendrew+16

Used the simulation pipeline HSIM (Zieleniewski+15) to predict spectra for passive galaxies of various redshifts, masses and light profiles observed in 10 hr with HARMONI@E-ELT

Redshift (z)	Stellar mass $(\log M/M_{\odot})$	Age (Gyr)	Magnitude (AB)	HSIM S/N (PS)	нsiм S/N (dV)	нзім S/N (Exp)	
2	10	3	J = 26.85	3	1.4	0.9	
3	10	2	H = 27.06	5	1.2	0.6	
4	10	1	K = 26.27	3	0.6	0.4	$\log(IVI/IVI_{sun}) = II$
2	11	3	J = 24.35	26	15	9	de Vaucouleur profile with R_=0.2'
3	11	2	H = 24.56	37	12	6	
4	11	1	K = 23.77	30	6	3	
2	12	3	J = 21.85	141	125	85	
3	12	2	H = 22.06	186	72	65	
4	12	1	K = 21.27	195	47	26	and the state of t
						Z=3	
						z=2	0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 Wavelength (restframe, μm)

The AO perspective – Resolved spectroscopy

Source: Kendrew+16

The AO perspective – Resolved spectroscopy

Kendrew+16

z=3, M_{*}=10¹⁰M_{sun} (x100) (RAMSES NUTFB simulation) 15 hr with HARMONI@E-ELT

High-z passive galaxies are key to understand galaxy evolution, but very challenging

□ 102 candidates at z>3 selected in CANDELS by ad-hoc SED fitting technique

□ ALMA data lends decisive evidence to the quiescent nature of our candidates

□ Red, compact, massive, few (0.5% of z>3 galaxies) but make 5-10% of cosmic SFRD at 3<z<8

□ Extremely fast and effective feedback mechamisms still to be understood

□ Need AO for deep resolved observations of high-z passive galaxies

Thanks

Further details in: Merlin+18: selection technique (GOODS-S) Santini+19: confirmation of the candidates Merlin+19: selection in the 5 CANDELS fields Santini+in prep: confirmation of the total sample + stellar MF