ASTROFISICA DI FRONTIERA CON L'OTTICA ADATTIVA ITALIANA Roma, 17-19 febbraio 2020 Accademia Nazionale dei Lincei

High resolution imaging in crowded stellar fields: present and future science

Emanuele Dalessandro

INAF OAS Bologna

Explore intrinsically dense systems

Galactic dense components: Bulge – Disk

Stellar clusters: Globular Clusters – Young Massive Clusters

~10³ - 10⁴ stars/arcsec²

Explore intrinsically dense systems

Detailed studies and characterization of their stellar population properties

Explore intrinsically dense systems

Reaching the magnitude limit and sample faint sequences

Explore the distant Universe

A dwarf galaxy (R_e ~5 kpc) will have an apparent dimension of a GC in M31

Explore the distant Universe

A M31-like galaxy will have GC-like dimension at the distance of the Virgo cluster

High-resolution imaging with AO systems

Three main basic requirements from an observer perspective

- **1. Effective AO corrections over a wide field of view**
- 2. High photometric performance
- 3. Good astrometric capabilities

Effective AO corrections over a wide field of view

NIRC2@Keck: wide field camera – Single LGS AO

Effective AO corrections over a wide field of view

GeMS/GSAOI photometric performance in dense stellar field

PSF average properties

Dalessandro et al. 2016, ApJ 833, 111

GeMS/GSAOI photometric performance in dense stellar field PSF uniformity Dalessandro et al. 2016

Comparison with HST

Dalessandro et al. 2016

HST provide similar resolution at different wavelengths

They are well suited to be used in combination

ACS/WFC@HST - Optical

GeMS/GSAOI

Good astrometric quality

PROPER MOTIONS: contamination from field stars and internal kinematics

The first characterization of the geometric distortion

Term(q)	Polyn.	$a_{q,[1]}$	$b_{q,[1]}$	$\mathbf{a}_{q,[2]}$	$b_{q,[2]}$	$\mathbf{a}_{q,[3]}$	$b_{q,[3]}$	$\mathbf{a}_{q,[4]}$	$\mathbf{b}_{q,[4]}$
1	\tilde{x}	7.2959	-8.1224	-8.2342	-8.0700	-8.6718	5.5598	7.7150	5.3724
2	\tilde{y}	-8.6592	-6.9948	-9.5140	7.0969	5.8746	7.4350	6.7219	-5.4231
3	\tilde{x}^2	6.7348	0.0217	7.0562	0.0903	6.9963	0.0301	6.8232	0.1139
4	$\widetilde{x}\widetilde{y}$	0.1646	-0.0045	0.1435	-0.0719	0.1301	-0.0197	0.2890	0.1021
5	\tilde{y}^2	6.6305	0.1600	6.7711	0.2774	6.7787	0.2803	6.7095	0.4254
6	\tilde{x}^3	0.0688	0.0089	-0.0635	0.0066	-0.0855	0.0042	0.1567	0.0100
7	$\tilde{x}^2 \tilde{y}$	0.0251	0.0770	0.0941	0.0112	-0.0543	-0.0347	0.0113	-0.0045
8	$\tilde{x}\tilde{y}^2$	-0.0922	-0.0215	0.0010	0.0774	-0.0600	0.0543	-0.0449	0.0378
9	\widetilde{y}^3	0.0300	0.0824	-0.0325	-0.0003	0.0305	0.0243	-0.0151	0.0544

Astrometric photometric quality

Saracino, Dalessandro et al. 2019, ApJ 874, 86

Enabling science at the state of the art

Structure and dynamical evolution

Accurate ages and new diagnostics

Observations of highly obscured systems

Terzan 5:

- Catalogued as a GC (Terzan 1968)
- Located at the edge of the inner bulge
- d=6 kpc (Valenti et al. 2007, Ortolani et al. 2001)
- Highly extincted region (<E(B-V)>=2.38 mag, Valenti et al. 2007)

The interesting case of Terzan5

ESO/VLT – MAD Science Verification (PI: Ferraro)

The interesting case of Terzan5

Ferraro, Dalessandro et al. 2009, Nature, 462, 483 Origlia et al. 2011, ApJ 726L, 20

 $\Delta (J-K)^{0.2}$ mag

The interesting case of Terzan5

The ages of the stellar populations of Terzan5

ESO/VLT – MAD Science Verification (PI: Ferraro) NIRC2-Keck (PI: Rich)

Ferraro, Massari, Dalessandro et al. 2016, ApJ 828, 75 Massari, Dalessandro et al. 2012, ApJ 755L, 32

- A large combination of HST and ground-based AO data
- Detailed differential reddening derivation
- Proper motion decontamination

The ages of the stellar populations of Terzan5

Ferraro, Massari, Dalessandro et al. 2016, ApJ 828, 75

Two well distinct Turn-Offs:

[Fe/H]=-0.2 t=12 Gyr [Fe/H]=+0.3 t=4.5 Gyr

The ages of the stellar populations of Terzan5

Ter5 is the ideal candidate to be the remnant of a massive clump that contributed to the formation of the Bulge

Formation of galactic sub-structures

- Bulges at high-z are clumped
- Proto-clouds locally fragments in massive clumps of gas
- They evolve towards the center of the galaxy and there they interact to form the bulge

Terzan5 did not merge/dissolve but evolved and self-enriched as an independent stellar system

Searching for Ter5 – like stellar systems with GeMS/GSAOI

Cluster formation and connection with the host Young (t<100 Myr) stellar cluster pairs in the Large Magellanic Cloud ESO-VLT HAWK-I/GRAAL Science Verification (PI: Dalessandro) Observed seeing ~ 0.75" Delivered FWHM~0.35"

Cluster formation and connection with the host

-100

-50

0

X [arcsec]

50

100

-100

-50

0

X [arcsec]

50

100

What's next? JWST NIRCam

Short Wavelength Channel (0.6 – 2.3 microns) 8 x 2040 x 2040 0.031"/pix Long Wavelength Channel (2.4 – 5.0 microns) 2 x 2040 x 2040 0.063"/pix

What's next? JWST NIRCam

What's next? E-ELT MICADO/MAORY

FoV ~ 50" Image Quality ~70% Strehl in K

Same sensitivity as JWST but 6x better resolution

-

MICADO Phase A study Simulations

MICADO

What's next? E-ELT MICADO/MAORY

What's next? E-ELT MICADO/MAORY

FoV ~ 50" Image Quality ~70% Strehl in K

High-z proto-GCs

Contribution of stellar clusters to the ionization of the early Universe

Formation of

multiple stellar population in GCs

ASTROFISICA **DI FRONTIERA** Thank you for your attention! TALIANA Roma, 17-19 febbraio 2020 Accademia Nazionale dei Lincei

AO systems with first-class telescopes are extremely useful tools for stellar populations studies in dense stellar fields

Their exploitation is definitely not straightforward

Modeling the PSF shape, geometric distortions and their variations – Their implementation within user-friendly analysis packages