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Francesca VidottoThe lifetime of a black hole

TIME DILATATION



Francesca VidottoHow does a Black Hole die?
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SCHWARZSCHILD IS BOTH BLACK AND WHITE

Schwarzschild

- White Holes and Black Holes shares the same Schwarzschild spacetime 
- Only checking if  matter is outgoing or ingoing they can be distinguished 
- This could be practically impossible! A long time may be needed!
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Francesca VidottoQuantum Gravity Phenomenology

WHITE HOLES AS REMNANTS 
Bianchi, Cristodoulou, D’Ambrosio, Haggard, Rovelli 1802.04264



Francesca VidottoQuantum Gravity Phenomenology

WHITE HOLES AS REMNANTS 
Bianchi, Cristodoulou, D’Ambrosio, Haggard, Rovelli 1802.04264

Preskill 9209058

Steps constructing the metric: 
Entropy  inside !  
Slow release of  inside information: almost stable remnant 
Unitarity and energy considerations impose !  
Stability under perturbations 

S ∼ m2
o

τR ∼ m4
o/ℏ3/2
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u(r, n }=e
(2.4)

In
terms

ofthese
fields

the
Lagrangian

is

S=f & —g
[ —

u R+2u
(Ba) —4(Bu) —

2u
e

+Que
(2.5)

The
equations

of motion
forthis

Lagrangian
are

given
in

Appendix
A.

Ofcourse,
to

find
interior

solutions
with

zero
magnetic

field
to
match

onto
the

exterior
extremal

dilaton
solution,

we
setQ =0

in
the

above
equation.

The
power

series
for

the
fields

o
and

(t, expanding
from

the
shell towards

the
interior,

is

2

u(r, n) =R
(~) 1—

R
(~)

[1+f, (r)n +f2(r)n
~

+f3(r)n
+

],
o(r, n

) =
[ln(R

(r)}+d, (r)n +d2(~)n
+d3(~)n

+
],

(2.6)

(2.7)

h(r, n)=1+h&(r)n+h2(r)n
+h3(r)n

+
g(r, n)=1+g,(r)n+g2(r)n

+g3(r)n
+

(2.8)

(2.9)

The
equations

that
we

have
to
describe

this
system

now
consistofthe

equations
for

u
and

o., and
the

stress
tensor

equation.
Atthe

boundary
ofthe

collapsing
shellthere

is
a nontrivial

matching
equation

forthe
stress

tensor
com-

ponent
Too.

W
e
will

assume
that

the
classical

Lagrangian
for

the
matter

thatconstitutes
the

shell
isofthe

form

S =f &
gu'[ —(a~)— '—m'~'+

].
(2.10)

That
is, the

matter
in
the

collapsing
shell

couples
to
the

dilaton
like

some
massive

mode
ofthe

string.
In
the

rest
frame

of
the

collapsing
shell,

the
matching

equation
readsMu(r,0) =f

Tor, dn
E

which
becomes

2
1/2

(2. 11)

where
the

coefficients
ofthe

leading
terms

are
determined

by
continuity

ofP
and

cracross
the

shell.
The

metric
is

g&
=diag[ —

h(r,n),g(r, n)
], and

the
coefficients

have
the

expansion,

tion,
but

here
the

dilaton
dynamics

gives
rise

to
an

infinite
set

of
spherically

symmetric
solutions

of
the

source
free

field
equations

in
a
finite

region.
W
e
have

tried
to
restrict

the
solution

by
assuming

a
cosmological

form
for

the
metric

ds = —dH+a(r)
(dr+r

dQ
) in-

side
the

shell,
but

this
isinconsistent

with
the

field
equa-

tions.
Similarly,

an
attempt

to
keep

the
three-

dimensionally
conformally

Oatform
ofthe

metric,
with

conformal
factor

tied
to
the

dilaton,
isinconsistent.

W
e

have
not

been
able

to
come

up
with

a
natural

ansatz.
Nonetheless,

we
believe

that
smooth

solutions
exist.

There
are

many
smooth

solutions
of the

vacuum
field

equations
restricted

to
a
manifold

with
the

topology
ofa

hemi-three-sphere
cross

time.
Our

matching
conditions

fix
only

the
values

ofthe
metric

functions
and

dilaton
along

the
timelike

world
lineofthe

collapsing
shell,

leav-
ing

their
normal

derivatives
undetermined.

Thus
there

seems
to
be

plenty
ofroom

forpatching
in
anonsingular

vacuum
solution.

To
obtain

some
feeling

forthe
motion

ofthe
collapsing

shell
we

have
made

the
fairly

arbitrary
assumption

that

a
fi(r)—

(2.13)

This
gives

us
a
single

first-order
ordinary

differential
equation

for
R(r).

The
solution

so
obtained

behaves
likeR(r)=Q+e

r',
as ~~oo.

W
e
can

then
use

this
solution

to
check

that
the

other
coefficient

functions,
to

leading
order,

are
well

behaved
for

all
finite

values
of~.

W
e
can

continue
this

procedure
perturbatively,

to
verify

that
the

coefficients
in
the

expansion
in
powers

of
n
are

smooth
functions

of~.Ofcourse, this
demonstration

ofa
smooth

perturbation
expansion

around
the

shell, doesnot
guarantee

the
existence

ofan
everywhere

smooth
solu-

tion.
W
econtinue

to
search

fora sensible
ansatz

that
will

enable
us

to
demonstrate

explicitly
the

existence
of

a
smooth

collapsing
solution,

but
we

feel
confident

that
such

a solution
exists.

The
collapsing

solution
that

we
have

described,
begins

asa
dimple

on
Aatspace.

Atany
finite

time
after

its for-
mation,

it
will

have
the

geometry
shown

in
Fig. 2.

W
e

will
refer

to
such

an
object

as
a
finite

volume
cornu-

copion.
Itisasolution

ofthe
field

equations
that

isstatic
over

mostofspace.
The

time
dependence

occurs
only

in
the

tip ofthe
horn.

Mu(r, 0) =R
1—

2R
R
+

1 —
—R

(2. 12)

Atthis
point

we
must

be
more

specific
about

the
fields

on
the

interior
ofthe

shell.
In
Einstein

stheory,
there

is
aunique

spherically
symmetric

nonsingular
vacuum

solu-

FIG.2.Instantaneous
snapshot

ofacollapsing
cornucopion.

7SeeAppendix
8
fordetails.

8The
fulldetails

ofthe
derivation

are
in
Appendix

B.
9Appendix

C.
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we mustbe more

specific aboutthe
fields

ontheinterioroftheshell.
InEinstein

stheory, there
is

aunique
spherically

symmetric
nonsingular

vacuum
solu-

FIG.2.Instantaneous
snapshot ofacollapsing

cornucopion.

7SeeAppendix 8fordetails.
8Thefulldetailsofthe derivation

are inAppendix
B.

9Appendix
C.

FIG. 2. The interior geometry of an old black hole: a very
long thin tube, whose length increases and whose radius de-
creases with time. Notice it is finite, unlikely the Einstein-
Rosen bridge.

the two regions A and B where classical general relativity
becomes unreliable.

Region A is characterised by large curvature and covers
the singularity. According to classical general relativity
the singularity never reaches the horizon. (N.B.: Two
lines meeting at the boundary of a conformal diagram
does not mean that they meet in the physical spacetime.)

Region B, instead, surrounds the end of the evapora-
tion, which involves the horizon, and a↵ects what hap-
pens outside the hole. Taking evaporation into account,
the area of the horizon shrinks progressively until reach-
ing region B.

The quantum gravitational e↵ects in regions A and B

are distinct, and confusing them is a source of misun-
derstanding. Notice that a generic spacetime region in
A is spacelike separated and in general very distant from
region B. By locality, there is no reason to expect these
two regions to influence one another.

The quantum gravitational physical process happening
at these two regions must be considered separately.

III. THE A REGION: TRANSITIONING
ACROSS THE SINGULARITY

To study the A region, let us focus on an arbitrary
finite portion of the collapsing interior tube. As we ap-
proach the singularity, the Schwarzschild radius rs, which
is a temporal coordinate inside the hole, decreases and
the curvature increases. When the curvature approaches
Planckian values, the classical approximation becomes
unreliable. Quantum gravity e↵ects are expected to
bound the curvature [8–11, 13–19, 22–24, 27, 29, 64, 65].
Let us see what a bound on the curvature can yield. Fol-
lowing [66], consider the line element

ds
2 = �4(⌧2 + l)2

2m� ⌧2
d⌧

2+
2m� ⌧

2

⌧2 + l
dx

2+(⌧2+l)2d⌦2
, (4)

where l⌧m. This line element defines a genuine Rieman-
nian spacetime, with no divergences and no singularities.
Curvature is bounded. For instance, the Kretschmann

FIG. 3. The transition across the A region.

invariant K ⌘ Rµ⌫⇢�R
µ⌫⇢� is easily computed to be

K(⌧) ⇡ 9 l2 � 24 l⌧2 + 48 ⌧4

(l + ⌧2)8
m

2 (5)

in the large mass limit, which has the finite maximum

K(0) ⇡ 9m2

l6
. (6)

For all the values of ⌧ where l ⌧ ⌧
2
< 2m the line

element is well approximated by taking l = 0 which gives

ds
2 = � 4⌧4

2m� ⌧2
d⌧

2 +
2m� ⌧

2

⌧2
dx

2 + ⌧
4
d⌦2

. (7)

For ⌧ < 0, this is the Schwarzschild metric inside the
black hole, as can be readily seen going to Schwarzschild
coordinates

ts = x, and rs = ⌧
2
. (8)

For ⌧ > 0, this is the Schwarzschild metric inside a white
hole. Thus the metric (4) represents a continuous transi-
tion of the geometry of a black hole into the geometry of
a white hole, across a region of Planckian, but bounded
curvature.
Geometrically, ⌧ = constant (space-like) surfaces foli-

ate the interior of a black hole. Each of these surfaces
has the topology S2 ⇥ R, namely is a long cylinder. As
time passes, the radial size of the cylinder shrinks while
the axis of the cylinder gets stretched. Around ⌧ = 0
the cylinder reaches a minimal size, and then smoothly
bounces back and starts increasing its radial size and
shrinking its length. The cylinder never reaches zero size
but bounces at a small finite radius l. The Ricci tensor
vanishes up to terms O(l/m).
The resulting geometry is depicted in Figure 3. The

region around ⌧ = 0 is the smoothing of the central black
hole singularity at rs = 0.
This geometry can be given a simple physical interpre-

tation. General relativity is not reliable at high curva-
ture, because of quantum gravity. Therefore the “pre-
diction” of the singularity by the classical theory has no
ground. High curvature induces quantum particle cre-
ation, including gravitons, and these can have an e↵ec-
tive energy momentum tensor that back-reacts on the

Internal transition:

External transition:

6

decay, a tunneling phenomenon, the quantum indeter-
mination in the decay time is of the same order as the
lifetime. The unitary evolution of the state of a particle
trapped in the nucleus is such that the state slowly leaks
out, spreading it over a vast region. A Geiger counter
has a small probability of detecting a particle at the
time where it happens to be. Once the detection hap-
pens, there is an apparent violation of unitarity. (In the
Copenhagen language the Geiger counter measures the
state, causing it to collapse, loosing information. In the
Many Worlds language, the state splits into a continuum
of branches that decohere and the information of a sin-
gle branch is less than the initial total information.) In
either case, the evolution of the quantum state from the
nucleus to a given Geiger counter detection is not uni-
tary; unitarity is recovered by taking into account the
full spread of di↵erent detection times. The same must
be true for the tunneling that disrupts the black hole. If
tunneling will happen at a time t, unitarity can only be
recovered by taking into account the full quantum spread
of the tunneling time, which is to say: over di↵erent fu-
ture goemetries. The quantum state is actually given by
a quantum superposition of a continuum of spacetimes
as in Figure 5, each with a di↵erent value of v� and v+.
We shall not further pursue here the analysis of this ap-
parent source of unitarity, but we indicate it for future
reference.

V. THE B REGION: THE HORIZON AT THE
TRANSITION

The geometry surrounding the transition in the B re-
gion is depicted in detail in Figure 7. The metric of

FIG. 7. The B region. Left: Surfaces of equal Schwarzschild
radius are depicted. Right: The signs of the null Kruskal
coordinates around B.

the entire neighbourhood of the B region is an extended
Schwarzschild metric. It can therefore be written in null
Kruskal coordinates

ds
2 = �32m3

r
e
� r

2m dudv + r
2
d⌦2

, (18)

where
⇣
1� r

2m

⌘
e

r
2m = uv. (19)

On the two horizons we have respectively v = 0 and
u = 0, and separate regions where u and v have di↵erent

signs as in the right panel of Figure 7. Notice the rapid
change of the value of the radius across the B region,
which yields a rapid variation of the metric components
in (18).
To fix the region B, we need to specify more precisely

its boundary, which we have not done so far. It is possible
to do so by identifying it with the diamond (in the 2d dia-
gram) defined by two points P+ and P� with coordinates
v±, u± both outside the horizon, at the same radius rP ,
and at opposite timelike distance from the bounce time,
see Figure 8.

FIG. 8. The B transition region.

The same radius rP implies

v+u+ = v�u� ⌘
⇣
1� rP

2m

⌘
e

rP
2m . (20)

The same time from the horizon implies that the light
lines u = u� and v = v+ cross on ts = 0, or u + v = 0,
hence

u� = �v+. (21)

This crossing point is the outermost reach of the quantum
region, with radius rm determined by

v+u� ⌘
⇣
1� rm

2m

⌘
e

rm
2m . (22)

The region is then entirely specified by two parameters.
We can take them to be rP and �⌧ = v+�v� ⇠ u+�u�.
The first characterizes the radius at which the quan-
tum transition starts. The second its duration. (Strictly
speaking, we could also have v+ � v� and u+ � u� of
di↵erent orders of magnitude, but we do not explore this
possibility here.)
There are indications about both metric scales in

the literature. In [3, 70], arguments where given for
rP ⇠ 7/3 m. Following [5], the duration of the tran-
sition has been called “crossing time” and computed
by Christodoulou and D’Ambrosio in [6, 7] using Loop
Quantum Gravity: the result is �⌧ ⇠ m, which can be
taken as a confirmation of earlier results [26, 71, 72] ob-
tained with other methods. The two crucial remaining
parameters are the black hole and the white hole life-
times, ⌧bh and ⌧wh.
The result in [6] indicates also that p, the probability

of tunneling per unit time, is suppressed exponentially
by a factor e

�m2/~. Here m is not the initial mass mo

Rovelli, Martin-Dussaud1803.06330
Ashtekar, Olmedo, Singh 1806.02406  
Ashtekar, Olmedo, Singh 1806.00648  
and more… 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Earlier quantum instability ~ M2 

REMNANT LIFETIME ~ M4
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NON-PERTURBATIVE QUANTUM GRAVITY

Ingredients: 

1. General Relativity  
* No modifications ($+ included) but relax conditions on manifold 

2. Quantum Mechanics 
* Violation of  Einstein eq.s in a finite region ⇒ NO central BH singularity 

3. Non-perturbative Methods 
* Effects that are not captured by standard QFT 
   Example: TUNNELLING 

 
classicalperturbative corrections non-perturbative corrections



Francesca VidottoThe lifetime of a black hole

TIME DILATATION

Comoving time ~ M ~  ms  for M 

Bounce time ~ M2 ~109  years for M�
�

r =
 0

t = 0

• 

• 

r=const

• 

horizon

quantum  
region

Vidotto, Rovelli 1401.6562  

Haggard,  Rovelli 1407.0989
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and there was
SpaceTime

H� = L2[SU(2)L/SU(2)N ]

Hilbert Space                                         
Operator Algebra

Wv = (PSL(2,C) � Y� �v)(1I)

Transition Amplitude

1. GEOMETRY QUANTIZED

• The matrix of the components Li
a, a = 1, .., 3 is L = �

1
2 (det M)M�1, where M is the matrix

formed by the components of three edges of the tetrahedron that emanate from a common
vertex.

Exercise: Show all these definitions are equivalent.

Figure 1.3. The four vectors~La, normals to
the faces.

The vectors~La have the following properties.

• They satisfy the “closure” relation

~C :=
4

Â
a=1

~La = 0. (1.3.5)

• The quantities ~La determine all other geometrical
quantities (for a tetrahedron), such as areas, vol-
ume, angles between edges and dihedral angles be-
tween faces. The geometry of the tetrahedron, and
all these quantities, are invariant under a common
SO(3) rotation of the four~La. Therefore the tetrahe-
dron is determined by an equivalence class of ~La’s
satisfying (1.3.5), under rotation. Check that the re-
sulting number of degrees of freedom is correct.

• The area Aa of the face a is |~La|.
• The volume V is determined by the (properly ori-

ented) triple product of any three faces:

V2 =
2
9
(~L1 ⇥~L2) ·~L3 =

2
9

eijkLi
1Lj

2Lk
3 = eabceijkLi

aLj
bLk

c =
2
9

det L. (1.3.6)

Exercise: Prove these relations. Hint: choose a tetrahedron determined by a triple of orthonormal edges,
and then argue that the result is general because the formula is invariant under linear transformations.

If the tetrahedron is small compared to the local curvature, the metric can be assumed to be
locally flat and~La can be identified with the flux of the triad field ei = ei

adxa across the face a (triads
and tetrads will be discussed in detail in Chapter 3)

Li
a =

1
2

ei
jk

Z

a
ei

^ ei (1.3.7)

Since the triad is the gravitational field, this gives the explicit relation between these quantities
and the gravitational field.

Quantization of the geometry

We have all the ingredients for jumping to quantum gravity. The geometry of a real physical tetra-
hedron is determined by the gravitational field, which is a quantum field. Therefore the normals
~La are to be described by quantum operators, when we do not disregard quantum gravity. These
will obey commutation relations. The commutation relation can be obtained from the hamilto-
nian analysis of GR, by promoting Poisson brackets to operators, in the same manner in which
(1.2.1) and (1.3.3) can; but ultimately they are quantization postulates, like (1.2.1) and (1.3.3). Let
us therefore just postulate them here. The simplest possibility is to mimic (1.3.3), namely to write

[Li
a, Lj

b] = idabl2#ij
k Lk

a, (1.3.8)

11

Francesca Vidotto

LOOP QUANTUM GRAVITY
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BOUNDARY STATE
r =

 0

t = 0
• 

• 
• 

Minkowski

Schwarzschild

Minkowski

Boundary: B3 U B3    (joined on a S2) 

Each B3  can be triangulated  
by 4 isosceles tetrahedra  

The bulk can be approximated to first order 
by two 4-simplices joined by a tetrahedron 
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TRANSITION TIME ~ M0 (Planckian) 

INTERNAL BOUNCE TIME ~ M  

EXTERNAL BOUNCE TIME 

Death by evaporation ~ M3 

Earlier quantum instability ~ M2 

REMNANT LIFETIME ~ M4

Francesca VidottoQuantum Gravity Phenomenology

HOLE TIMES
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Hawking evaporation: m3~1050 Hubble time
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 BLACK-HOLE LIFETIME

Small effects can pile up: small probability per time unit gives a probable effect on a long time!

m

r3
Tb ⇠ 1

1

m2
Tb ⇠ 1

For something quantum to happens, semiclassical approximation must fail. 

Typically in quantum gravity: high curvature     Curvature ~ (LP)-2 

Typically in quantum tunneling:                  Curvature × (time) ~ (LP)-1 

 

Black-to-White Tunnelling 
In the quantum world, things happen as soon as they can! 
Indications from a full LQG computations.

Haggard,  Rovelli 1407.0989

Chistodoulou, Rovelli, Speziale, Vilensky 1605.05268

   ⟹ the hole lifetime must be longer or of  the order of  ~ m2

Quantum Break Time Dvali, Gomez  1112.3359
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LARGE EXTRA DIMENSIONS  
1st order topological phase transition from black string to black hole  
occurring because of  the Gregory-Laflamme  metrical instability  

 

BRANES  
Large black holes localized on infinite Randall-Sundrum branes:  
period of  rapid decay via Hawking radiation of  CFT modes  
 

 
Quantum effects shorten the lifetime of  black holes!

 
Casadio and Harms 2000/01  

Gubser 2002, Kol 2002 
Gregory and Laflamme 2002 

Emparana, Garcıa-Bellido, Kaloper 2003 

 UNIVERSALITY OF BLACK HOLE EXPLOSION?

M (3+2n)/(1+n)
BH
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Assumptions: 
General Relativity: Equivalence Principle 
Quantum Mechanics: Unitary Evolution 
QFT in Curved Spacetime (fixed smooth background) 

Firewall argument  
after the Page time i.e. when about half  of  black-hole mass has evaporated  
particles emitted needs to break entanglement releasing an enormous energy 

Black Hole Lifetime  
Quantum Gravity effects should manifest before the Page time 
⟹ the hole lifetime must be shorter or of  the order of  ~ m3 

See also Quantum Break Time

 FIREWALL NO-GO THEOREM

Vidotto, Rovelli 1401.6562  

Almheiri, Marolf, Polchinski, Sully 1207.3123

Dvali, Gomez  1112.3359

See also Rovelli: “The Subtle Unphysical Hypothesis of the Firewall Theorem”
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Scenario 3 
FAST EXPLOSION
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PRIMORDIAL BLACK HOLES

PBHs are the least exotic beast in the dark universe zoo of theories 

PBHs are a viable DARK MATTER candidate 
* careful with old constraints in the literature! 

PBHs are interesting even if they are not all DARK MATTER  
* PBHs can be used to test QUANTUM GRAVITY 
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Today, black holes smaller than                      have already exploded. 

It decreases with time.  ( but for later accretion/merging )  

Caution with constraints! 

Effects on late cosmology

m(t)|t=tH

Francesca VidottoHow does a Black Hole die?

(QUANTUM) PBH DARK MATTER

Constraints from 
Hawking evaporation 
do not apply any more. 

Galaxy clusters surveys

Raccanelli, Vidotto, Verde 1708.02588
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EFFECT ON GALAXY CLUSTERS
Raccanelli, Vidotto, Verde 1708.02588
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angular positions and redshifts 
perturbed by peculiar velocities, 
gravitational lensing and potentials  
 
 

Choice of  redshift distribution:

3

where � refers to the overdensity in the comoving gauge,
rsd and v denote Doppler effects and peculiar velocity
[49],  the lensing convergence and pot incorporates lo-
cal and non local terms depending on Bardeen potentials
and their temporal derivatives; t includes tensor pertur-
bation effects. For simplicity, we omitted the redshift and
direction dependencies (n, z).

Galaxy clustering measurements have been used to
measure cosmological parameters for a variety of cosmo-
logical models (see e.g. [50–56]), and it is the focus of
many future large scale galaxy surveys (see e.g. [57–61]).
Therefore it is interesting to see that it can also be used
to test different QG models and potentially extend con-
straints on PBHs as DM.

The most relevant statistical quantity usually mea-
sured is the 2-point function; its spherical harmonic coun-
terpart, the angular power spectrum, that correlates two
probes X and Y is:

C
XY
` (zi, zj) =

D
a
X
`m(zi) a

Y ⇤

`m(zj)
E

, (3)

where the star denotes complex conjugation, and the
spherical harmonics coefficients are defined by X =P

a`mY`m(n), with Y`m denoting the spherical harmon-
ics functions, n the direction on the sky and zi is the red-
shift. This can be calculated from the underlying matter
power spectrum by using:

C
XY
` (zi, zj) =

Z
4⇡dk

k
�2(k) WX

` (k, zi) W
Y
` (k, zj) , (4)

where W
{X,Y }
` are the source distribution kernels for the

different observables (i.e. galaxies in different redshift
bins) and �2(k) is the dimensionless matter power spec-
trum today.

The kernel for the galaxy clustering can be written as
(see e.g. [62]):

W
X
` (k) =

Z
dNX(z)

dz
D(z) bX(z) j`[k�(z)] dz , (5)

where dNX(z)/dz is the objects redshift distribution,
D(z) the growth rate of structures, bX(z) is the bias
that relates the observed overdensity to the underlying
matter distribution (see [63] for a recent review); j`(x)
is the spherical Bessel function of order `, and �(z) is
the comoving distance.

B. Cosmic Magnification

Gravitational lensing causes the deflection of light rays
by the matter distribution along the line of sight, causing
two competing effects: on one hand, a size magnification
of sources behind a lens, on the other hand lensing causes
the stretching of the observed field of view. Therefore,
for magnitude (or flux) limited galaxy surveys, sources
that are just below the threshold for detection will be

magnified and become detectable, so that the observed
number density of sources increases. At the same time,
the stretching of the field of view leads to a decrease of
the observed number density. The combined effect can
be written as:

n
obs(z) = ng(z)[1 + (5s� 2)] , (6)

where n
obs and ng are the observed and intrinsic number

of sources, respectively, s is the magnification bias and 

is the convergence. The net modification of the observed
number density is called magnification bias s:

s =
d logN|<M

dM

����
Mlim

, (7)

where Mlim is the magnitude (or flux) limit of the survey
and N|<M

is the number count for galaxies brighter than
a magnitude (or flux) M .

Cosmic magnification has been suggested as a probe
for cosmology [64] and has been subsequently studied in
a variety of works (see e.g. [65, 66]); as part of the contri-
butions to the observed large-scale galaxy correlation, it
has been analyzed in e.g. [48, 67, 68]. From Equation (4),
it is clear that cosmic magnification could be detected by
cross-correlating galaxies in two disjoint redshift bins (see
e.g. [69, 70]).

C. Galaxy surveys

We model our galaxy survey after the Square Kilo-
metre Array (SKA)2, which is an international multi-
purpose next-generation radio interferometer, that will
be built in the Southern Hemisphere in Africa and in
Australia, with a total collecting area of about 1 km2.
Among many types of observations delivered by such in-
struments, we focus here on surveys that will detect in-
dividual galaxies in the radio continuum [71]; we assume
that the survey will cover 30, 000 deg2, and we compute
results for a flux limit of 1µJy. Although radio contin-
uum surveys do not have in principle redshift informa-
tion, some techniques have been proposed to allow the
possibility to divide the galaxy catalog into tomographic
redshift bins; here we follow the clustering-based redshift
(CBR) information approach proposed in [72], and stud-
ied for some cosmological applications (including some
predictions for the SKA), in [73]. In Figure 1 we show
the (normalized) redshift distribution for the SKA radio
continuum survey we use for this paper.

We compute the observational consequences of BH de-
cay by using a modified version of the class3 code, and
we investigate the effects on galaxy angular power spec-
tra. Given the specifications of the proposed future sur-
veys, we forecast the measurements’ precision using the

2 https://skatelescope.org
3 http://class-code.net/
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Characterisation 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 HIGH ENERGY: energy of  the particle liberated 

 SYNCHROTRON EMISSION (REES’ MECHANISM) 

 LOW ENERGY: size of  the source  ≈  wavelength                                

 GRAVITATIONAL WAVES !!! 

 exploding today: R =
2Gm

c2
⇠ .02 cmm =

r
tH
4k

⇠ 1.2⇥ 1023 kg

E = mc2 ⇠ 1.7⇥ 1047 erg

Vidotto 1811.08007

�predicted & .05 cm

⇡ Tev

R =
2Gm

c2
⇠ .02 cm

 fast process  ( few milliseconds? ) 

 the source disappears with the burst 

 very compact object: big flux 

 PBH EXPLOSIONS

FRB (?)

�predicted & .05 cm�predicted&.05cm �predicted&.05cm
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Hadron decay

Direct emission

Galactic scale

k
E [eV]

1 104

3.6×1013
108

3.6×1014
1012

3.6×1015
1016

3.6×1016
1020

3.6×1017

1016

1018

1020

1022

1024

R
[m

]

detection of  arbitrarily far signals 

better single-event detection 

Barrau, Bolliet, Vidotto, Weimer 1507.1198

Hubble radius

Galactic scale

k
E [eV]

1 104

2.7
108

2.7×102
1012

2.7×104
1016

2.7×106
1020

2.7×108

1028

1026

1020

1022

1024

R
[m

]

Low energy channel High energy channel

PBH: mass - temperature relation 

different scaling 

shorter lifetime  —  smaller wavelength

MAXIMAL DISTANCE
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THE SMOKING GUN: DISTANCE/ENERGY RELATION

 distant signals originated in younger, smaller&hotter sources
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WHITE HOLES AS REMNANTS 1

Rovelli, Vidotto 1805.03872

 
Christodoulou, Rovelli 1411.2854 

Christodoulou, De Lorenzo1604.07222  LARGE INTERNAL VOLUME ~ Mo4  
It depends only on the original mass Mo at the BH formation  
 

REMNANT LIFETIME ~ Mo4 
Time for information to leak out from such a large volume trough the small WH surface.

Bianchi, Cristodoulou, D’Ambrosio,  
Haggard, Rovelli 1802.04264

 QUANTUM EFFECTS MAKE REMNANTS STABLE

5

governed by the Hamiltonian

H =

0

@
m+ 3

p
3 i⇡m

2
o

@

@v
� i

~2

m2
@

@m
b
~
m

c
~
m
e
�m

2
/~

m� 3
p
3 i⇡m

2
o

@

@v

1

A

(22)
where we have added also a diagonal energy term propor-
tional to the mass in order to obtain the standard energy
phase evolution, and c and b are constants of order unit.

We now ask what are the stable or semi-stable states
of the hole as seen from the exterior.

A macroscopic black hole with mass m much larger
than the Planck mass mP =

p
~ is stable when seen from

the exterior for a (long) time span of the order m
3
/~,

which is the Hawking evaporation time. The stability
is due to the fact that process (1) does not a↵ect the
exterior, process (2) does not concern black holes and
process (4) is strongly suppressed for macroscopic holes.

A macroscopic white hole, on the other hand, is not so
stable, because of the fast instability of process (2). As
basic physics is invariant under time reversal, one may
wonder what breaks time reversal invariance here. What
breaks time reversal invariance is the notion of stability
that we are using. This is a stability under small fluc-
tuations of the past boundary conditions. If instead we
asked about stability under small fluctuations of the fu-

ture boundary conditions, we would obviously obtain the
opposite result: macroscopic white holes would be stable
while macroscopic black holes would not.

The question we are interested in is what happens
(generically) to a large macroscopic black hole if it is
not fed by incoming mass. Then two processes are in
place: its Hawking evaporation for a time ⇠ m

3
/~ (pro-

cess 3) and the internal growth of v (process 1). This
continues until process (4) becomes relevant, which hap-
pens when the mass is reduced to order of Planck mass.
At this point the black hole has a probability of order
one to tunnel into a white hole under process (4). But a
white hole in unstable under process (2), giving it a finite
probability of returning back to a black hole. Both pro-
cesses (4) and (2) are fast at this point. Notice that this
happens at large v, therefore in a configuration that clas-
sically is very distant from flat space, even if the overall
mass involved is small.

As energy is constantly radiated away and no energy
is fed into the system, the system evolves towards low
m. But m cannot vanish, because of the presence of the
interior: in the classical theory, a geometry with larger v
and small m is not contiguous to a Minkowski geometry,
even if the mass is small. Therefore in the large v region
we have m > 0. Alternatively, this can be seen as a
hypothesis ruling out macroscopic topology change.

But m cannot be arbitrarily small either, because of
quantum gravity. The quantity m is defined locally by
the area of the horizon A = 16⇡G2

m
2 and A is quan-

tized. According to Loop Quantum Gravity [40] the
eigenvalues of the area of any surface are [41]

A = 8⇡ ~G
p
j(j + 1) (23)

where we have taken the Immirzi parameter to be unit
for simplicity. The minimal non-vanishing eigenvalue is

ao = 4
p

3⇡ ~G (24)

and is called the ‘area gap’ in loop quantum cosmology
[42]. This gives a minimal non-vanishing mass µ defined
by ao = 16⇡G2

µ
2, that is
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G
. (25)

(we have momentarily restored G 6= 1 for clarity.) Radi-
ating energy away brings down the system to the m = µ

eigenspace. Consider now states that are eigenstates of
m with the minimal value m = µ and denote them
|B,µ, vi and |W,µ, vi. The dynamics governed by the
above Hamiltonian allows transition between black and
white components. This is a typical quantum mechanical
situation where two states, here |B,µ, vi and |W,µ, vi,
can dynamically turn into one another. Let us we disre-
gard for a moment v, which is invisible from the exterior,
and project H̃ down to a smaller state space H with ba-
sis states |H,µi. This is a two dimensional Hilbert space
with basis vectors |B,µi and |W,µi. Seen from the exte-
rior, the state of ⌃ will converge to Hµ.
The Hamiltonian acting on this subspace is

H =

 
µ

b~
µ

a~
µ

µ

!
(26)

where a = ce
�

p
3

4 . Quantum mechanics indicates that in
a situation where the system can radiate energy away and
there are possible transitions between these two states,
the actual state will converge to a quantum state which
is a quantum superposition of the two given by the lowest
eigenstate of H. This is

|Ri =

p
a

b
|B,µi � |W,µi
p

1 + a

b

(27)

(R for ‘Remnant’) and has eigenvalue µ � ~
p
ab/µ. If

the amplitude b of going from black to white is larger
than the amplitude a of going from white to black (as
it seems plausible), the state is dominated by the white
hole component. A related picture was been considered
in [43–45]: a classical oscillation between black and white
hole states.
In a fully stationary situation, the mass m is equal

to the Bondi mass, which generates time translations at
large distance from the hole in the frame determined by
the hole. (Quantum gravity is locally Lorentz invariant
[46, 47] and has no preferred time [48] but a black hole
in a large nearly-flat region determines a preferred frame
and a preferred time variable.) Keeping possible tran-
sitions into account there is a subtle di↵erence between
the mass m, determined locally by the horizon area, and
the energy of the system, which is determined by the full

oscillation between  
black and white  

hole states  
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2. White to black instability 
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mal extension of the Schwarzschild solution is equally the
outside of a black hole and the outside of a white hole
(see Fig. 1, Top). Analogous considerations hold for the
Kerr solution. In other words, the continuation inside
the radius r = 2m + ✏ of an external stationary black
hole metric contains both a trapped region (a black hole)
ad an anti-trapped region (a white hole).

What distinguishes then a black hole from a white
hole? The objects in the sky we call ‘black holes’ are de-
scribed by a stationary metric only approximately, and
for a limited time. In their past (at least) their met-
ric was definitely non-stationary, as they were produced
by gravitational collapse. In this case, the continuation
of the metric inside the radius r = 2m + ✏ contains a
trapped region, but not an anti-trapped region (see Fig.
1, Center). Viceversa, a white hole is an object that is
undistinguishable from a black hole from the exterior and
for a finite time, but in the future ceases to be stationary
and there is no trapped region in its future (see Fig. 1,
Bottom).

III. QUANTUM PROCESSES AND TIME
SCALES

The classical prediction that the black is forever stable
is not reliable. In the uppermost band of the central
diagram of Fig. 1 quantum theory dominates. The death
of a black hole is therefore a quantum phenomenon. The
same is true for a white hole, reversing time direction.
That is, the birth of a white hole is in a region where
quantum gravitational phenomena are strong.

This consideration eliminates a traditional objection
to the physical existence of white holes: How would they
originate? They originate from a region where quantum
phenomena dominate the behaviour of the gravitational
field.

Such regions are generated in particular by the end
of the life of a black hole, as mentioned above. Hence
a white hole can in principle be originated by a dying
black hole. This scenario has been shown to be concretely
compatible with the exact external Einstein dynamics
in [12] and has been explored in [13–18]. The causal
diagram of the spacetime giving the full life cycle of the
black-white hole is given below in Fig. 2.

In particular, the result of [16] indicates that the black-
to-white process is asymmetric in time [13] and the time
scales of the durations of the di↵erent phases are deter-
mined by the initial mass of the black hole mo. The
lifetime ⌧BH of the black hole is known from Hawking
radiation theory to be at most of the order

⌧BH ⇠ m
3
o

(1)

in Planck units ~ = G = c = 1. This time can be as
shorter as ⌧BH ⇠ m

2
o
because of quantum gravitational

e↵ects [11–15] (see also [20–24]) but we disregard this
possibility here. The lifetime ⌧WH of the white hole phase

WH II
BH

FIG. 2: The full life of a black-white hole.

is longer [16]:

⌧BH ⇠ m
4
o
. (2)

The tunnelling process itself from black to white takes a
time of the order of the current mass at transition time
[15]. The area of the horizon of the black hole decreases
with time because of Hawking evaporation, decreasing
from mo to the Planck mass mPl. At this point the
transition happens and a white hole of mass of the order
of the Planck mass is formed.

IV. TIMESCALES

Consider the hypothesis that white-hole remnants are
a constituent of dark matter. To give an idea of the
density of these objects, a local dark matter density of
the order of 0.01M�/pc

3 corresponds to approximately
one Planck-scale remnant, with the weight of half a inch
of human hair, per each 10.000Km

3. For these objects to
be still present now we need that their lifetime be larger
or equal than the Hubble time TH , that is

m
4
o
� TH . (3)

On the other hand, since the possibility of many larger
back holes is constrained by observation, we expect rem-
nants to be produced by already evaporated black holes,
therefore the lifetime of the black hole must be shorter
than the Hubble time. Therefore

m
3
o
< TH . (4)

This gives an estimate on the possible value of m0:

1010gr  m
3
o
< 1015gr. (5)

These are the masses of primordial black holes that could
have given origin to dark matter present today in the
form of remnants. Their Schwarzschild radius is in the
range

10�18
cm  Ro < 10�13

cm. (6)
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The tunnelling process itself from black to white takes a
time of the order of the current mass at transition time
[15]. The area of the horizon of the black hole decreases
with time because of Hawking evaporation, decreasing
from mo to the Planck mass mPl. At this point the
transition happens and a white hole of mass of the order
of the Planck mass is formed.
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Consider the hypothesis that white-hole remnants are
a constituent of dark matter. To give an idea of the
density of these objects, a local dark matter density of
the order of 0.01M�/pc
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of human hair, per each 10.000Km
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back holes is constrained by observation, we expect rem-
nants to be produced by already evaporated black holes,
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PBHs form at the reheating, evaporates and evolve in a long-living remnant 

REMNANT LIFETIME COMPATIBLE WITH FORMATION AT REHEATING  
Mo4 ≥ tHubble 
Mo3 < tHubble 

NUCLEOSYNTHESIS  
BH evaporation should not modify D/H, Li6/Li7, and He3/D ratio 
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of the matter density ⇢M , and this in turn is related to
TH by the Friedmann equation

1

T 2
H

⇠
✓
ȧ

a

◆2

⇠ ⇢M , (5)

where we neglect factors of order unit. Therefore the
current density ⇢ of remnants is of the order

⇢ ⇠ ⇢M ⇠ 1

T 2
H

. (6)

If we take the mass of each remnant to be Planckian
[15], namely of order unit in Planck units, ⇢ is also their
number density in the units we are using. From the big
bounce to the current epoch the universe has widely ex-
panded. Assuming at least 60 e-folding, the bounce is
not very far from the epoch where the horizon is Planck-
ian, which gives a linear expansion factor of the order of
TH and therefore a volume expansion factor of the order
of T 3

H
. To have the su�cient density of remnants today

to saturate dark matter, we need a density of the order

⇢b ⇠ ⇢T 3
H

⇠ TH (7)

at the bounce. Using (4) we have an amount of internal
volume per unit of external volume

Vint = ⇢bVWH > T 2
H
. (8)

This means that only a fraction

1/T 2
H

⇠ 10�120 (9)

of the volume of the universe was outside the remnants at
the bounce. If we assume equiprobability for each equal
volume of the universe, the probability for an observer to
be outside those remnants at the bounce is one part in
10120. Therefore an observer outside the remnants is in
this sense ‘special’ as one part in 10120.

III. PAST LOW ENTROPY

The mystery of the second principle of thermodynam-
ics is not why entropy growth towards the future. That’s
pretty obvious. The mystery is why entropy diminishes
going towards the past [30–35]. All current irreversible
phenomena, including our own future-oriented thinking,
the existence of memories and the direction of causal-
ity we use to make sense of the world, can be traced to
the fact that entropy was low in the past [36, 37]. Since
matter was apparently near thermal equilibrium in the
past, the low entropy was concentrated on the geometry.
In fact, in standard cosmology geometry is assumed to
be nearly homogenous. For the gravitational field, ho-
mogeneity is a very low entropy configuration, because
gravity tends to clump and generically the evolution of
perturbations leads increasingly away from homogene-
ity. In fact, as long argued by Penrose, generic states

of gravity, to which generic evolution tends, are highly
crumpled, not homogeneous. (For interesting criticisms
and informed alternative perspectives, see [38–41].)
The fact that source of past low entropy, hence the

source of irreversibility, was the homogeneity of space
is confirmed by a simple analysis of the thermodynam-
ical history of the universe. For instance irreversibility
on Earth is due to the strong source of negative en-
ergy formed by the sun; the sun in turn was irreversibly
formed by the collapse of a primordial cloud under grav-
itational attraction. Therefore the original negative en-
tropy driving irreversibility around us can be traced to
the early lack of gravitational clumping. As repeatedly
pointed out by Penrose, the fact that the geometry of
the universe was small and homogenous to the degree re-
quired by the current standard cosmological model, im-
plies a very ‘special’ state determining an initial low en-
tropy.
But if the remnant scenario is correct, the geometry at

the bounce had far more volume and was not homogenous
at all. To the opposite, it was very highly crumpled. If
so, what is the origin of past low entropy, if it is not how
special the initial geometry was?

IV. PERSPECTIVAL ENTROPY

An imposing aspects of the Cosmos is the mighty daily
rotation of Sun, Moon, planets, stars and all galaxies
around us. Why does the Cosmos rotate so? Well, it is
not the Cosmos rotating, it is us. The rotation of the sky
is a perspectival phenomenon: we understand it better as
due to the peculiarity of our own moving point of view,
rather than as a global feature of all celestial objects.
The list of conspicuous phenomena that have turned out
to be perspectival is long; recognising them has been a
persistent aspect of the progress of science.
The hypothesis put forward in [26] is that the increase

of entropy is a perspectival phenomenon in this sense. To
be sure, it is not subjective or mental, or illusory. Rather,
its source is in the relation between an observer system
and an observed system, like for the rotation of the sky.
This is possible because the entropy of a system de-

pends on the system’s microstate but also on the coarse
graining under which the system interacts. The relevant
coarse graining is determined by the concrete existing
interactions with the system. The entropy we assign to
systems around us depends on the way we interact with
them – as the apparent motion of the sky depends on our
own motion.
This observation opens a novel way for facing the puz-

zle of the arrow of time: the universe is in a generic
state, but su�ciently rich to include subsystems whose
coupling defines a coarse graining for which entropy in-
creases monotonically. These subsystems are those where
information can pile up and ‘information gathering crea-
tures’ such as those composing the biosphere can exist.
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TH by the Friedmann equation
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⇠ ⇢M , (5)

where we neglect factors of order unit. Therefore the
current density ⇢ of remnants is of the order

⇢ ⇠ ⇢M ⇠ 1

T 2
H

. (6)

If we take the mass of each remnant to be Planckian
[15], namely of order unit in Planck units, ⇢ is also their
number density in the units we are using. From the big
bounce to the current epoch the universe has widely ex-
panded. Assuming at least 60 e-folding, the bounce is
not very far from the epoch where the horizon is Planck-
ian, which gives a linear expansion factor of the order of
TH and therefore a volume expansion factor of the order
of T 3

H
. To have the su�cient density of remnants today

to saturate dark matter, we need a density of the order

⇢b ⇠ ⇢T 3
H

⇠ TH (7)

at the bounce. Using (4) we have an amount of internal
volume per unit of external volume

Vint = ⇢bVWH > T 2
H
. (8)

This means that only a fraction

1/T 2
H

⇠ 10�120 (9)

of the volume of the universe was outside the remnants at
the bounce. If we assume equiprobability for each equal
volume of the universe, the probability for an observer to
be outside those remnants at the bounce is one part in
10120. Therefore an observer outside the remnants is in
this sense ‘special’ as one part in 10120.

III. PAST LOW ENTROPY

The mystery of the second principle of thermodynam-
ics is not why entropy growth towards the future. That’s
pretty obvious. The mystery is why entropy diminishes
going towards the past [30–35]. All current irreversible
phenomena, including our own future-oriented thinking,
the existence of memories and the direction of causal-
ity we use to make sense of the world, can be traced to
the fact that entropy was low in the past [36, 37]. Since
matter was apparently near thermal equilibrium in the
past, the low entropy was concentrated on the geometry.
In fact, in standard cosmology geometry is assumed to
be nearly homogenous. For the gravitational field, ho-
mogeneity is a very low entropy configuration, because
gravity tends to clump and generically the evolution of
perturbations leads increasingly away from homogene-
ity. In fact, as long argued by Penrose, generic states

of gravity, to which generic evolution tends, are highly
crumpled, not homogeneous. (For interesting criticisms
and informed alternative perspectives, see [38–41].)
The fact that source of past low entropy, hence the

source of irreversibility, was the homogeneity of space
is confirmed by a simple analysis of the thermodynam-
ical history of the universe. For instance irreversibility
on Earth is due to the strong source of negative en-
ergy formed by the sun; the sun in turn was irreversibly
formed by the collapse of a primordial cloud under grav-
itational attraction. Therefore the original negative en-
tropy driving irreversibility around us can be traced to
the early lack of gravitational clumping. As repeatedly
pointed out by Penrose, the fact that the geometry of
the universe was small and homogenous to the degree re-
quired by the current standard cosmological model, im-
plies a very ‘special’ state determining an initial low en-
tropy.
But if the remnant scenario is correct, the geometry at

the bounce had far more volume and was not homogenous
at all. To the opposite, it was very highly crumpled. If
so, what is the origin of past low entropy, if it is not how
special the initial geometry was?

IV. PERSPECTIVAL ENTROPY

An imposing aspects of the Cosmos is the mighty daily
rotation of Sun, Moon, planets, stars and all galaxies
around us. Why does the Cosmos rotate so? Well, it is
not the Cosmos rotating, it is us. The rotation of the sky
is a perspectival phenomenon: we understand it better as
due to the peculiarity of our own moving point of view,
rather than as a global feature of all celestial objects.
The list of conspicuous phenomena that have turned out
to be perspectival is long; recognising them has been a
persistent aspect of the progress of science.
The hypothesis put forward in [26] is that the increase

of entropy is a perspectival phenomenon in this sense. To
be sure, it is not subjective or mental, or illusory. Rather,
its source is in the relation between an observer system
and an observed system, like for the rotation of the sky.
This is possible because the entropy of a system de-

pends on the system’s microstate but also on the coarse
graining under which the system interacts. The relevant
coarse graining is determined by the concrete existing
interactions with the system. The entropy we assign to
systems around us depends on the way we interact with
them – as the apparent motion of the sky depends on our
own motion.
This observation opens a novel way for facing the puz-

zle of the arrow of time: the universe is in a generic
state, but su�ciently rich to include subsystems whose
coupling defines a coarse graining for which entropy in-
creases monotonically. These subsystems are those where
information can pile up and ‘information gathering crea-
tures’ such as those composing the biosphere can exist.
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BOUNCING BLACK HOLES IN A BOUNCING UNIVERSE 
Planckian PBH remands from a previous eon (Penrose’s EREBONS) 
Planck size particles can pass trough the bounce.  

PAST LOW ENTROPY  
Matter near thermal equilibrium: geometry has low entropy  
A volume of  the universe outside BH as low as only                            of  the total  
could have been outside the remnants at the bounce! 

DARK MATTER  
We want Mo4 ≥ tHubble for them to survive till today. 

Inflation dilutes PBH: 

MATTER BOUNCE: PBH as pressureless component 
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TRANSITION TIME ~ M0 (Planckian) 

INTERNAL BOUNCE TIME ~ M  

EXTERNAL BOUNCE TIME 

Death by evaporation ~ M3 

Earlier quantum instability ~ M2 

REMNANT LIFETIME ~ M4

Francesca VidottoQuantum Gravity Phenomenology

HOLE TIMES

QG allows for Black-to-White tunnelling  
* Mystery solved: this is how a BH dies!  
* Instability possibly before Hawking 
evaporation time: new phenomenology
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TRANSITION TIME ~ M0 (Planckian) 

INTERNAL BOUNCE TIME ~ M  

EXTERNAL BOUNCE TIME 

Death by evaporation ~ M3 

Earlier quantum instability ~ M2 

REMNANT LIFETIME ~ M4
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HOLE TIMES

REMNANTS AS DARK MATTER  
* compatible with PBH formation at reheating 
* stability via minimal area/mass 

BOUNCE2 : Bouncing BH in a Bouncing Universe


