Remote Time Manipulation

David Trillo (Joint work with Ben Dive and Miguel Navascués) arXiv:1903.10568

Time Machine Factory, September 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let H be a time-independent Hamiltonian.

Let H be a time-independent Hamiltonian.

$$\ket{\psi(t)} = e^{-i H t} \ket{\psi_0}$$

Let H be a time-independent Hamiltonian.

$$\ket{\psi(t)} = e^{-i \mathcal{H} t} \ket{\psi_0}$$

Figure: Time evolution of a quantum system

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Figure: Fast forward and rewind of a quantum system.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We want to warp the evolution time of a quantum system, but

We want to warp the evolution time of a quantum system, but

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Without resorting to relativity.

We want to warp the evolution time of a quantum system, but

- Without resorting to relativity.
- Without knowledge of the system (i.e.: its Hamiltonian or its interaction with other systems)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We want to warp the evolution time of a quantum system, but

- Without resorting to relativity.
- Without knowledge of the system (i.e.: its Hamiltonian or its interaction with other systems)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• With universal protocols.

We want to warp the evolution time of a quantum system, but

- Without resorting to relativity.
- Without knowledge of the system (i.e.: its Hamiltonian or its interaction with other systems)
- With universal protocols.

We allow for probabilistic protocols, as long as they are also heralded (that is, we must know if the protocol succeeds).

Context

Figure: One way to influence an unknown system. ¹

Example

Suppose that n probes are prepared in the state $|\psi\rangle_P$ and that each one interacts with the system via the unitary W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

Suppose that n probes are prepared in the state $|\psi\rangle_P$ and that each one interacts with the system via the unitary W. If, after the interaction, we post-select on the probes being in the state $|0...0\rangle_P$, the final state of the system will be

 $\langle 0...0|_P W(V \otimes 1) |\phi\rangle_S |\psi\rangle_P$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example By writing

$$|\psi\rangle_P = \sum_{\vec{k}} c_{\vec{k}} |k_1 \cdots k_n\rangle$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$|\psi\rangle_P = \sum_{\vec{k}} c_{\vec{k}} |k_1 \cdots k_n\rangle$$

 and

$$U_k = \langle 0|_P W(V \otimes 1) | k \rangle_P.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example By writing
$$|\psi
angle_P = \sum_{ec k} c_{ec k} \, |k_1 \cdots k_n
angle$$
 and

$$U_k = \langle 0|_P W(V \otimes 1) | k \rangle_P.$$

We get

$$|\phi_{\text{final}}\rangle_{\mathcal{S}} = \sum_{\vec{k}} c_{k_1 \cdots k_n} U_{k_1} \cdots U_{k_n} |\phi\rangle_{\mathcal{S}}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Definition

A polynomial $f(x_1, \dots, x_n) \in K\langle X \rangle$ is a *central polynomial* for a ring R if

1. for any $r_1, \dots, r_n \in R$, $f(r_1, \dots, r_n)$ lies in the center of R.

- 2. f is not identically zero.
- 3. the constant term of f is zero.

Definition

A polynomial $f(x_1, \dots, x_n) \in K\langle X \rangle$ is a *central polynomial* for a ring R if

- 1. for any $r_1, \dots, r_n \in R$, $f(r_1, \dots, r_n)$ lies in the center of R.
- 2. f is not identically zero.
- 3. the constant term of f is zero.

Theorem (Formanek, Razmyslov) $M_n(K)$ has a central polynomial.

Remark

Formanek's polynomial is of the form $F(x, y_1, \dots, y_n)$, homogeneous of degree $n^2 - n$ in x and linear in y_i .

Example

٠

Let $A, B \in M_2$. Consider the polynomial

 $[A,B]^2$

Example

٠

Let $A, B \in M_2$. Consider the polynomial

 $[A, B]^{2}$

As [A, B] is traceless, [A, B] = aX + bY + cZ.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Example

Let $A, B \in M_2$. Consider the polynomial

 $[A, B]^{2}$

As [A, B] is traceless, [A, B] = aX + bY + cZ.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Therefore,

 $[A, B]^2 \propto 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our setup

Figure: A more general interaction between systems and probes, with the targeting assumption.

Tensor polynomials

These protocols correspond to polynomials of the form

$$f(V, U_1, \cdots, U_n) = \sum_k c_k p_k(V, U_1, \cdots, U_n) \otimes \cdots \otimes q_k(V, U_1, \cdots, U_n).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

This extra structure allows for more interesting behaviours.

Tensor polynomials

These protocols correspond to polynomials of the form

$$f(V, U_1, \cdots, U_n) = \sum_k c_k p_k(V, U_1, \cdots, U_n) \otimes \cdots \otimes q_k(V, U_1, \cdots, U_n).$$

This extra structure allows for more interesting behaviours.

Theorem

There exist polynomials in $M_n \otimes \cdots \otimes M_n$ which are proportional to P_S , the projector onto the symmetric subspace; to P_A , the projector onto the antisymmetric subspace and to permutations of the tensor factors (i.e., SWAPs).

Main result

Theorem

Let P be a protocol on n copies of a system of dimension d with the targeting assumption. If at the end of a heralded success, system i is in state $\psi(T_i)$ and the protocol took time T', then it must be that

$$\sum_{i:T_i<0} (d-1)|T_i| + \sum_{j:T_j>0} T_j \le nT'.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Moreover, this inequality is optimal.

Take-home messages

- 1. Control of a system can be used to get some heralded control of another system
- Evolution time behaves a bit like energy: it cannot be created or destroyed, but it can be transferred between systems or wasted.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. Evolution time can be inverted at a cost depending on dimension.