Remote Time Manipulation

David Trillo (Joint work with Ben Dive and Miguel Navascués) arXiv:1903.10568

Time Machine Factory, September 2019

Motivation

Let H be a time-independent Hamiltonian.

Motivation

Let H be a time-independent Hamiltonian.

$$
|\psi(t)\rangle=e^{-i H t}\left|\psi_{0}\right\rangle
$$

Motivation

Let H be a time-independent Hamiltonian.

$$
|\psi(t)\rangle=e^{-i H t}\left|\psi_{0}\right\rangle
$$

Figure: Time evolution of a quantum system

Motivation

Figure: Fast forward and rewind of a quantum system.

Motivation

We want to warp the evolution time of a quantum system, but

Motivation

We want to warp the evolution time of a quantum system, but

- Without resorting to relativity.

Motivation

We want to warp the evolution time of a quantum system, but

- Without resorting to relativity.
- Without knowledge of the system (i.e.: its Hamiltonian or its interaction with other systems)

Motivation

We want to warp the evolution time of a quantum system, but

- Without resorting to relativity.
- Without knowledge of the system (i.e.: its Hamiltonian or its interaction with other systems)
- With universal protocols.

Motivation

We want to warp the evolution time of a quantum system, but

- Without resorting to relativity.
- Without knowledge of the system (i.e.: its Hamiltonian or its interaction with other systems)
- With universal protocols.

We allow for probabilistic protocols, as long as they are also heralded (that is, we must know if the protocol succeeds).

Context

Figure: One way to influence an unknown system. ${ }^{1}$

[^0]
Matrix Polynomials

Example

Suppose that n probes are prepared in the state $|\psi\rangle_{P}$ and that each one interacts with the system via the unitary W.

Matrix Polynomials

Example

Suppose that n probes are prepared in the state $|\psi\rangle_{P}$ and that each one interacts with the system via the unitary W. If, after the interaction, we post-select on the probes being in the state $|0 \ldots 0\rangle_{P}$, the final state of the system will be

$$
\left\langle\left. 0 \ldots 0\right|_{P} W(V \otimes 1) \mid \phi\right\rangle_{S}|\psi\rangle_{P}
$$

Matrix Polynomials

Example
By writing

$$
|\psi\rangle_{P}=\sum_{\vec{k}} c_{\vec{k}}\left|k_{1} \cdots k_{n}\right\rangle
$$

Matrix Polynomials

Example
By writing

$$
|\psi\rangle_{P}=\sum_{\vec{k}} c_{\vec{k}}\left|k_{1} \cdots k_{n}\right\rangle
$$

and

$$
U_{k}=\left\langle\left. 0\right|_{P} W(V \otimes 1) \mid k\right\rangle_{P}
$$

Matrix Polynomials

Example
By writing

$$
|\psi\rangle_{P}=\sum_{\vec{k}} c_{\vec{k}}\left|k_{1} \cdots k_{n}\right\rangle
$$

and

$$
U_{k}=\left\langle\left. 0\right|_{P} W(V \otimes 1) \mid k\right\rangle_{P}
$$

We get

$$
\left|\phi_{\text {final }}\right\rangle_{S}=\sum_{\vec{k}} c_{k_{1} \cdots k_{n}} U_{k_{1}} \cdots U_{k_{n}}|\phi\rangle_{S}
$$

Central polynomials

Definition

A polynomial $f\left(x_{1}, \cdots, x_{n}\right) \in K\langle X\rangle$ is a central polynomial for a ring R if

1. for any $r_{1}, \cdots, r_{n} \in R, f\left(r_{1}, \ldots, r_{n}\right)$ lies in the center of R.
2. f is not identically zero.
3. the constant term of f is zero.

Central polynomials

Definition

A polynomial $f\left(x_{1}, \cdots, x_{n}\right) \in K\langle X\rangle$ is a central polynomial for a ring R if

1. for any $r_{1}, \cdots, r_{n} \in R, f\left(r_{1}, \ldots, r_{n}\right)$ lies in the center of R.
2. f is not identically zero.
3. the constant term of f is zero.

Theorem (Formanek, Razmyslov)
$M_{n}(K)$ has a central polynomial.
Remark
Formanek's polynomial is of the form $F\left(x, y_{1}, \cdots, y_{n}\right)$, homogeneous of degree $n^{2}-n$ in x and linear in y_{i}.

Central polynomials

Example

Let $A, B \in M_{2}$. Consider the polynomial
$[A, B]^{2}$

Central polynomials

Example
Let $A, B \in M_{2}$. Consider the polynomial $[A, B]^{2}$

As $[A, B]$ is traceless, $[A, B]=a X+b Y+c Z$.

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Central polynomials

Example
Let $A, B \in M_{2}$. Consider the polynomial $[A, B]^{2}$

As $[A, B]$ is traceless, $[A, B]=a X+b Y+c Z$.

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Therefore,
$[A, B]^{2} \propto 1$.

Our setup

Figure: A more general interaction between systems and probes, with the targeting assumption.

Tensor polynomials

These protocols correspond to polynomials of the form
$f\left(V, U_{1}, \cdots, U_{n}\right)=\sum_{k} c_{k} p_{k}\left(V, U_{1}, \cdots, U_{n}\right) \otimes \cdots \otimes q_{k}\left(V, U_{1}, \cdots, U_{n}\right)$.
This extra structure allows for more interesting behaviours.

Tensor polynomials

These protocols correspond to polynomials of the form
$f\left(V, U_{1}, \cdots, U_{n}\right)=\sum_{k} c_{k} p_{k}\left(V, U_{1}, \cdots, U_{n}\right) \otimes \cdots \otimes q_{k}\left(V, U_{1}, \cdots, U_{n}\right)$.
This extra structure allows for more interesting behaviours.
Theorem
There exist polynomials in $M_{n} \otimes \cdots \otimes M_{n}$ which are proportional to P_{S}, the projector onto the symmetric subspace; to P_{A}, the projector onto the antisymmetric subspace and to permutations of the tensor factors (i.e., SWAPs).

Main result

Theorem
Let P be a protocol on n copies of a system of dimension d with the targeting assumption. If at the end of a heralded success, system i is in state $\psi\left(T_{i}\right)$ and the protocol took time T^{\prime}, then it must be that

$$
\sum_{i: T_{i}<0}(d-1)\left|T_{i}\right|+\sum_{j: T_{j}>0} T_{j} \leq n T^{\prime}
$$

Moreover, this inequality is optimal.

Take-home messages

1. Control of a system can be used to get some heralded control of another system
2. Evolution time behaves a bit like energy: it cannot be created or destroyed, but it can be transferred between systems or wasted.
3. Evolution time can be inverted at a cost depending on dimension.

[^0]: ${ }^{1}$ Miguel Navascues, Phys. Rev. X 8, 031008 (2018)

