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Outline
In this talk I will look at the description of Quantum fields on
Low-regularity spacetimes.

This brings into focus some issues not so obvious in the smooth case.

Quantum Fields on smooth spacetimes - the algebraic approach
Low regularity issues - what regularity is needed?
Solutions of the wave equation on Rn+1 for low-regularity metrics
Generalised hyperbolicity: Well-posedness of the wave equation for
low regularity metrics
Quantisation: The role of Green operators and the causal propagator
Quantisation: The symplectic form ω (and the space it is defined on)
Quantisation: CCRs on the space of quasi-local C∗-algebras
Locally covariant quantum fields and the Haag-Kastler axioms
Generalised hyperbolicity for quantum fields
Relation to other work
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Quantum Fields on curved spacetimes

We want to use quantum fields as probes of the singularities of classical
spacetimes.

Although not a fundamental theory of nature this provides many insights
into important physics. Examples are:

Hawking radiation by Black Holes
Unruh effect - detection of particles by accelerating observers
Prediction of CMB from Cosmic inflation

From the mathematical perspective there are two main issues:

How to define the evolution of the fields:
What is the “causal propagator”?
How to define the states:
What are the physical states - what is the vacuum state?
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Quantising classical fields on smooth spacetimes

We use the algebraic approach to quantisation as described by Bär, Ginoux
and Pfäffle “Wave Equations on Lorentzian Manifolds and Quantization”
Functorial description of each step:

Existence and uniqueness result for Cauchy problem for smooth
hyperbolic equation Pu = f with smooth initial data and source f .
For simplicity in this talk I will take Pu = �g u
Corresponding result on globally hyperbolic spacetime (M, g).
Causal support condition
supp(u) ⊂ J+(supp(u0) ∪ supp(u1) ∪ supp(f )).
Existence and uniqueness of advanced (and retarded) Green operators
G+ : D(M)→ C∞(M) such that

1 P ◦ G+ = idD(M)
2 G+ ◦ P|D(M) = idD(M)
3 supp(G+φ) ⊂ J+(supp(φ)) for all φ ∈ D(M)
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Quantising classical fields on smooth spacetimes (cont.)

Define causal propagator G := G+ − G− satisfying:

0 −→ D(M) P−→ D(M) G−→ C∞sc (M) P−→ C∞sc (M)

Define skew symmetric bi-linear form ω̃(φ, ψ) := 〈(Gφ), ψ〉L2(M,g).
Define corresponding symplectic form ω on quotient space
V (M) := D(M)/ker(G) = D(M)/P(D(M))
Show that Green operators are compatible with restriction to causally
compatible subsets M̃ ⊂ M
Construct canonical commutation relations (CCRs) on the space of
quasi-local C∗-algebras which satisfy the Haag-Kastler axioms
Define physical fields using micro-local spectrum condition on 2-point
function.
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Issues in low regularity

Existence of (weak) solution in Rn+1. What regularity is reasonable
for gij? What regularity do we want for our solution?
Well-posedness of corresponding solution on (M, g). Global
hyperbolicity in non-smooth case. Causality results in non-smooth
case. Higher order energy-estimates in non-smooth case.
Choice of function spaces for Green operators. Now a map between
Sobolev spaces.
Symplectic form ω - What space is this defined on? Exact sequence
result - Does this hold in non-smooth case?
Haag-Kastler axioms - need causality results in low regularity setting
Micro-local condition for physical states. Needs Sobolev micro-local
analysis. What Sobolev space works mathematically/physically?
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Our choice of regularity

We take the metric g to be C 1,1(M)

Curvature in L∞ but allows for jumps in energy-momentum tensor at
an interface.
Minimal condition that ensures existence and uniqueness of solutions
to the geodesic equation.
Causality results (including global hyperbolicity) go through more or
less unchanged from smooth case [KSSV]
Solutions of the wave equation are in H2

loc(M)
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Solutions in Rn+1

Method:

Replace g by family of smooth metrics gε while controlling the causal
structure so that J+

ε (U) ⊂ J+(U)
Use smooth theory and explicit higher order energy estimates to
obtain generalised “Colombeau solutions” of generalised (forward)
Cauchy problem.
Use compactness argument to show that the generalised solution
converges to a (weak) solution u+ ∈ H2

loc(Rn+1) of the original
equation.
Use J+

ε (U) ⊂ J+(U) to show that for zero initial data
supp(u+) ⊂ J+(supp(f ))
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Solutions in (M, g)

Causal Structure:
For C 1,1 spacetimes the smooth definition(s) of global hyperbolicity
remain unchanged. It is also shown by Minguzzi that for such spacetimes
one may choose a smooth temporal function.
H1 Energy inequality:
Use divergence theorem on energy-momentum tensor on
U+ := U ∩ J+(Σ) to show

||u||H̃1(Στ∩U+) ≤ K
(
||u||H̃1(Σ0∩U+) + ||f ||L2(Uτ )

)
Uniqueness:
Use energy inequality to show that H2

loc(M) solutions of �g u = f with
f ∈ H1

loc(M) and initial data in H2(Σ)× H1(Σ) are unique.
Causal support:
Use energy inequality on U = J−(p) ∩ J+(Σ) for
p ∈ M \ J+(supp(u0) ∪ supp(u1) ∪ supp(f )) to show that
supp(u) ⊂ J(supp(u0) ∪ supp(u1) ∪ supp(f )).
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Solutions in (M, g) (cont.)

Existence for compact source and initial data:
Follow proof in Ringström “The Cauchy problem in General Relativity” to
piece together local solutions on Rn+1 to obtain a (weak) solution
u ∈ C 0(R,H2(Σt)) ∩ C 1(R,H1(Σt)) ∩ H2

loc(M) to the initial value
problem. Note use of temporal function to avoid need to take traces in
Sobolev spaces.

Global Existence and Uniqueness:
Let p be any point to the future of Σ. Then Kp = J−(p) ∩ J+(Σ) is a
compact set. We now use local existence on all such sets together with
the global uniqueness result to give a global solution. We also use Causal
support result to show that supp(u) ⊂ J(supp(u0) ∪ supp(u1) ∪ supp(f )).

Higher order Energy estimates:
We obtain these from local estimates using a partition of unity

||u||C0([0,T ],H2(Σ))+||u||C1([0,T ],H1(Σ)) ≤ C
(
‖u0‖H2(Σ)+‖u1‖H1(Σ)+||f ||H1(M)

)
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Global Existence and Uniqueness:
Let p be any point to the future of Σ. Then Kp = J−(p) ∩ J+(Σ) is a
compact set. We now use local existence on all such sets together with
the global uniqueness result to give a global solution. We also use Causal
support result to show that supp(u) ⊂ J(supp(u0) ∪ supp(u1) ∪ supp(f )).

Higher order Energy estimates:
We obtain these from local estimates using a partition of unity

||u||C0([0,T ],H2(Σ))+||u||C1([0,T ],H1(Σ)) ≤ C
(
‖u0‖H2(Σ)+‖u1‖H1(Σ)+||f ||H1(M)

)
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Existence and Uniqueness

Theorem: Global Existence and Uniqueness
Let (M, g) be a connected, oriented, time oriented (n + 1)-dimensional
Lorentzian globally hyperbolic manifold with C 1,1 metric and Σ a smooth
spacelike n-dimensional Cauchy hypersurface. Let t be a (smooth)
temporal function with t−1(0) = S and let n be the future directed
timelike unit normal to Σ.
Given initial data (u0, u1) ∈ H2(Σ)× H1(Σ) and source
f ∈ L2

loc(R,H1(Σt)) then there exists a unique (weak) solution
u ∈ C 0(R,H2(Σt)) ∩ C 1(R,H1(Σt) ∩ H2

loc(M) to the initial value problem

�g u = f on M,
u = u0 on Σ,

∇nu = u1 on Σ.

Moreover supp(u) ⊂ J(supp(u0) ∪ supp(u1) ∪ supp(f )).
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Well-posedness

Using the higher-order energy estimate we can establish the following
spacetime energy estimate

||u||H2(K) ≤ C
(
‖u0‖H2(Σ) + ‖u1‖H1(Σ) + ||f ||H1(M)

)
.

for any compact K ⊂ M

Corollary: Well-posedness
The solution to the Cauchy problem described in the above Theorem is
well-posed in the sense that the solution map

Sol : H2(Σ)× H1(Σ)× H1
comp → H2

loc

( u0, u1, f ) 7→ u

is continuous.
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Function spaces for our Green Operators
The definition of the Green operators in the non-smooth setting will
require us to choose suitable function spaces as domain and range.

We therefore define the following spaces

V0 ={φ ∈ H2
comp(M) such that: �gφ ∈ H1

comp(M)}
U0 =H1

comp(M)
Vsc ={φ ∈ H2

loc(M) such that: �gφ ∈ H1
loc(M)

and supp(φ) ⊂ J(K ) where K b M}

V0 are the compactly supported functions contained in the space V given
by the graph norm of �g ,

‖ψ‖Gr := ‖ψ‖H2(M) + ‖�gψ‖H1(M)

while Vsc are functions in V satisfying the causal support condition.
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Green Operators
Definition:
A linear map

G+ : H1
comp(M)→ H2

loc(M)

satisfying the following properties.
1 �g G+ = idH1

comp(M)

2 G+�g |V0 = idV0

3 supp(G+(f )) ⊂ J+(supp(f )) for all f ∈ H1
comp(M)

is an advanced Green operator for �g .

A retarded Green operator G− is defined similarly.
Note: Our function spaces H2

loc(M) and H1
comp(M) used as target space

and domain for the Green operators do not depend on a background
metric and are in perfect accordance with the theory of so-called regular
fundamental solutions for hyperbolic operators with constant coefficients
(Hörmander).
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Green operators for �g in C 1,1 spacetimes

Theorem
Let (M, g) be a time oriented globally hyperbolic Lorentzian manifold with
C 1,1 metric, then there exits unique advanced and retarded Green
operators for �g

Exact sequence
The causal propagator G = G+ − G− is a map G : H1

comp(M)→ H2
loc(M)

and the following complex is exact.

0 −→ V0
P−→ U0

G−→ Vsc
P−→ H1(M)

Skew symmetry
Given χ, ϕ ∈ H1

comp(Σ) we have that∫
M

(G+(χ)ϕ)νg =
∫

M
(χG−(ϕ))νg
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Causally Compatible subsets

Definition
A subset Ω ⊂ M in a time-oriented Lorentzian manifold is called causally
compatible if for all points x ∈ Ω we have

J±Ω (x) = J±M(x) ∩ Ω ∀x ∈ Ω

In other words whenever two points in Ω can be joined by a causal curve in
M then this can also be done within Ω.

It followsfrom the defintion that for each subset A ∈ Ω we have

J±Ω (A) = J±M(A) ∩ Ω ∀x ∈ Ω

Note: Being causally compatible is transitive. So that if Ω ⊂ Ω′ ⊂ Ω′′
with Ω a causally compatible subset of Ω′ and Ω′ a causally compaptible
subset of Ω′′ then Ω is a causally compatible subset of Ω′′.
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Restrictions of G to causally compatible subsets

Theorem
Let M be a time oriented connected globally hyperbolic manifold with a
C 1,1 Lorentzian metric. Let G+be the Green operators for �g . Let Ω ⊂ M
be a causally compatible open subset.
Then for all ϕ ∈ H1

comp(M) with supp(ϕ) ⊂ Ω

G̃+(ϕ) := G+(ϕext)|Ω, where ϕext denotes extension by zero.

is an advanced Green operator for the restriction of �g to Ω. We denote
the restriction of �g to Ω by �̃g .

Notice that ∀u ∈ H2
loc(M) we have �̃g (u|Ω) = �g |Ω(u|Ω) = (�g u)|Ω and

∀u ∈ H2(Ω) with supp(u) ⊆ Ω we have (�̃g u)ext = �g (uext).
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The symplectic space

Define ω̃ : U0 × U0 → R by

ω̃(φ, ψ) =
∫

M
G(φ)ψνg

where G = G+ − G− is the causal propagator. Then ω is bi-linear and
skew-symmetric. However, ω̃ is degenerate because ker(G) is different
from zero. Moreover from the exact sequence result we have that

ker(G) = �g V0.

Therefore on the quotient space V (M) = U0/ker(G) = U0/�g V0 the
degenerate form ω̃ induces a symplectic form which we denote by ω.

Symplectic Space
V (M) = U0/�g (V0) equipped with the bi-linear form ω induced on the
quotient space by ω̃ is a symplectic vector space
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Compatibitly of Green Operators
The previous result together with the uniqueness of Green operators shows
that Green operators are compatible on causally compatible subsets.

Theorem
Let ι : M1 → M2 be a time-orientation preserving isometric embedding (so
that ι(M1) ⊂ M2 is a causally compatible open subset) and let H1

comp(Mi )
be the set of φ ∈ H1

comp(M) with supp(φ) ⊂ Mi .
Then the following diagram commutes

H1
comp(M1) H1

comp(M2)

H2
loc(M1) H2

loc(M2)

ext

G±1 G±2
res

Remark: This shows that ι also induces a symplectic linerar map
S : (V (M1), ω(G1))→ (V (M2), ω(G2))
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Weyl systems and the CCR representation of (V (M), ω)

The remaining results are virtually identical to the smooth case (see
BGP)

We now introduce the definition of a Weyl system and a
CCR- representation of (V , ω) for a general symplectic space.

Weyl System
A Weyl system of the symplectic vector space (V , ω) consists of a
C∗-algebra A with unit and a map W : V → A such that for all ϕ,ψ

1 W (0) = 1,
2 W (−ϕ) = W (ϕ)∗
3 W (ϕ) ·W (ψ) = e−iω(ϕ,ψ)/2W (ϕ+ ψ)
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Constructing a Weyl system on (V , ω)

Let H = L2(V ,C) be the Hilbert space of square-integrable
complex-valued functions on V with respect to the counting measure, i.e.,
H consists of those functions F : V → C that vanish everywhere except
for countably many points and satisfy ||F ||2L2 :=

∑
φ∈V |F (φ)|2 <∞

The Hermitian product on H is given by

(F ,G)L2 =
∑
φ∈V

F (φ) · G(φ) (1)

Let A := L(H) be the C∗ algebra of bounded linear operators on H .
We define the map W : V → A by

(W (φ)F )(ψ) := e
iω(φ,ψ)

2 F (φ+ ψ) (2)

Then W : V → A is a Weyl system for (V , ω)

James Vickers (University of Southampton) Turin, September 2019 21 / 30



Canonical Commutation Relations

CCR-representation
A Weyl system (A,W ) of a symplectic vector space (V , ω) is called a
CCR-representation of (V , ω) if A is generated as a C∗- algebra by the
elements W (ϕ), ϕ ∈ V . In this case we call A a CCR-algebra of (V , ω).

Remark: Of course , for any Weyl system (A,W ) we can simply replace
A by the C∗-subalgebra generated by the elements W (ϕ), ϕ ∈ V and we
obtain a CCR-representation.

We hve therefore shown how to generate a Weyl system and a
CCR-representation for an arbitrary symplectic vector space (V , ω) and
hence in particular for (V (M), ω) constructed via the Green operator.
Uniqueness also holds (in an appropriate sense).
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Compatibility of CCR-algebras
Let (V1, ω1) and (V2, ω2) be two symplectic vector spaces and let
S : V1 → V2 be a symplectic linear map. Then there exist a unique
injective ∗-morphism

CCR(S) : CCR(V1, ω1)→ CCR(V2, ω2) (3)

such that the diagram below commutes

V1 V2

CCR(V1, ω1) CCR(V2, ω2)

S

W1 W2

CCR(S)

Remark: In particular if ι : M1 → M2 is a time-orientation preserving
isometric embedding we may apply this result to

S : (V (M1), ω(G1))→ (V (M2), ω(G2))

to show the compatibility of the CCR-algebras for causally compatible sets.
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Quasi-local C ∗-algebras
Definition:
A bosonic quasi-local C∗-algebra is a pair (U , {Uα}α∈I) of a C∗- algebra U
and a family {Uα}α∈I of C∗-subalgebras, where I is a directed set with
orthogonality relation such that the following holds:

Uα ⊂ Uβ whenever α ≤ β
U = ∪Uα where the bar denotes closure in the U norm.
The algebras Uα have a common unit 1.
If α ⊥ β the commutator of Uα and Uβ is trivial: [Uα,Uβ] = {0}

In our situation we take:

I =: {O ⊂ M : O is open, relatively compact, causally compatible,
and globally hyperbolic} ∪ {∅,M}

On I we take the inclusion ⊆ as the partial order ≤ and define the
orthogonality relation by O ⊥ O′ :⇐⇒ J(O) ∩ O′ = ∅.
So that they are orthogonal iff they are causally independent.
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Constructing the quasi-local C ∗-algebra
We define the index set I as above.
For any non-empty O ∈ I we restrict �g to O.
Due to the causal compatibility of O ∈ M the restrictions of the Green
operators G+ and G− to O yield Green operators G+

O and G−O for �g |O
Let (V (O), ωO) be the corresponding symplectic vector space
where ωO = ω|O.
Let UO be the CCR-representation of the symplectic space (V (O), ωO).
This is a C∗-subalgebra of UM and UO is a C∗-subalgebra of UO′ if
O ⊂ O′.
Proposition

UM = C∗
⋃
O∈I
UO


and (UM , {UO}O∈I) is a weak quasi-local C∗-algebra.
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The Haag-Kastler Axioms
We have shown how to go from a globally hyperbolic C 1,1 spacetime
(M, g) to the space of quasi-local C∗-algebras (UM , {UO}O∈I) generated
by the symplectic vector spaces (V (O), ωO) coming from the causal
propagator GO for �g |O.
This construction satisfies the Haag-Kastler axioms:

1 If O1 ⊂ O2 then UO1 ⊂ UO2 for all O1,O2 ∈ I
2 UM = ∪UO
3 UM is simple
4 The UO’s have a common unit 1
5 For all O1,O2 ∈ I with J(O1) ∩ O2 = ∅, the UO1 ,UO2 commute.
6 (Time-slice axiom) Let O1 ⊂ O2 be nonempty element of I admitting

a common Cauchy hypersurface Σ. Then UO1 = UO2
7 Let O1,O2 ∈ I and let the Cauchy development D(O2) be relatively

compact in M. If O1 ⊂ D(O2), then UO1 ⊂ UO2 .
The only problematic issue is the time-slice axiom but the C 1,1-causality
results plus properties of temporal function ensure that the proof in the
smooth case from BGP goes through.

James Vickers (University of Southampton) Turin, September 2019 26 / 30



The Haag-Kastler Axioms
We have shown how to go from a globally hyperbolic C 1,1 spacetime
(M, g) to the space of quasi-local C∗-algebras (UM , {UO}O∈I) generated
by the symplectic vector spaces (V (O), ωO) coming from the causal
propagator GO for �g |O.
This construction satisfies the Haag-Kastler axioms:

1 If O1 ⊂ O2 then UO1 ⊂ UO2 for all O1,O2 ∈ I
2 UM = ∪UO
3 UM is simple
4 The UO’s have a common unit 1
5 For all O1,O2 ∈ I with J(O1) ∩ O2 = ∅, the UO1 ,UO2 commute.
6 (Time-slice axiom) Let O1 ⊂ O2 be nonempty element of I admitting

a common Cauchy hypersurface Σ. Then UO1 = UO2
7 Let O1,O2 ∈ I and let the Cauchy development D(O2) be relatively

compact in M. If O1 ⊂ D(O2), then UO1 ⊂ UO2 .

The only problematic issue is the time-slice axiom but the C 1,1-causality
results plus properties of temporal function ensure that the proof in the
smooth case from BGP goes through.

James Vickers (University of Southampton) Turin, September 2019 26 / 30



The Haag-Kastler Axioms
We have shown how to go from a globally hyperbolic C 1,1 spacetime
(M, g) to the space of quasi-local C∗-algebras (UM , {UO}O∈I) generated
by the symplectic vector spaces (V (O), ωO) coming from the causal
propagator GO for �g |O.
This construction satisfies the Haag-Kastler axioms:

1 If O1 ⊂ O2 then UO1 ⊂ UO2 for all O1,O2 ∈ I
2 UM = ∪UO
3 UM is simple
4 The UO’s have a common unit 1
5 For all O1,O2 ∈ I with J(O1) ∩ O2 = ∅, the UO1 ,UO2 commute.
6 (Time-slice axiom) Let O1 ⊂ O2 be nonempty element of I admitting

a common Cauchy hypersurface Σ. Then UO1 = UO2
7 Let O1,O2 ∈ I and let the Cauchy development D(O2) be relatively

compact in M. If O1 ⊂ D(O2), then UO1 ⊂ UO2 .
The only problematic issue is the time-slice axiom but the C 1,1-causality
results plus properties of temporal function ensure that the proof in the
smooth case from BGP goes through.James Vickers (University of Southampton) Turin, September 2019 26 / 30



Topological Issues

Recall that G is a linear map U0 → Vsc and let G0 denote the associated
map from the quotient U0/ker(G) to im(G) ⊆ Vsc, defined by
G0(φ+ ker(G)) := Gφ for every φ ∈ U0, which is linear and bijective by
construction. We therefore have the following chain of algebraic
isomorphisms of vector spaces

U0/�g V0 = U0/ker(G) ∼= im(G) = ker(�g ) ⊆ Vsc.

The qustion arises if U0/ker(G) ∼= im(G) is a topological isomorphism.

Proposition
Let the quotient U0/ker(G) be equipped with the finest topology such
that the canonical surjection π : U0 → U0/ker(G), φ 7→ φ+ ker(G) is
continuous. Then U0/ker(G) ∼= im(G) is a topological isomorphism.
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Relation to other work
We may define a symplectic form Ξ on ker(�g ) by

Ξ(Ψ1,Ψ2) =:
∫

Σt
(π1ϕ2 − π2ϕ1)νgt

where ϕi and πi are Ψi |Σ and ∇nΨi |Σ respectively. This defintion is
indenpendent of the choice of smooth spacelike Cauchy surface Σ.

Note: We have a topological isomorphism ker(�g ) = im(G) ∼= U0/ker(G).

Proposition

Ξ(Ψ1,Ψ2) = ω([ψ], [φ])

where Ψ and [φ] are related by the above topological isomorphism.

So (V (M), ω) is equivalent to using (ker(�g ),Ξ) as is done by Wald.
In this description the Weyl relation:
W (f ) ·W (g) = e−iω(f ,g)/2W (f + g) translates to [ϕ̂(x), π̂(y)] = δ(x − y)
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The Physical States

To obtain the standard description in terms of operators in Hilbert space
one needs to specify states. Note we cannot use the standard Fock space
approach since without the symmetry of Minkowski space we do not have
a preferred vacuum.

In the smooth case one uses Hadamard states defined via the wavefront
set of the two-point function to specify the physical states.
In the non-smooth case one needs to use instead a Sobolev Wavefront set
to define adiabatic states.

This is the topic for a separate talk!
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