Sensing Quantum Gravity \& Gravitational Waves with Mesoscopic Superpositions

Sougato Bose

 University College London

The Superposition Principle Underpins Quantum Mechanics

Very familiar in experiments

If you decohere (kill superpositions) nonclassical features of quantum mechanics go away.

To understand/evidence superposition you have to control the phase

For $\phi=0 \quad$ D1 Clicks
For $\phi=\pi \quad$ D2 Clicks

Less familiar superposition:
Higher the N in NOON Gets!

States with
$\mathrm{N} \sim 10^{10-} 10^{13}$ atoms?

If so what are the Applications?

How to create the macroscopic superpositions (earliest idea is Schroedinger's Nucleo-Biological mechanism). Coherent ancilla induced.

Ancilla Induced AND Ancilla Probed Superposition:

Ancilla induced; Neutrons hitting movable four-mirror system

D. Home \& S. Bose, Physics Letters A 217, 209 (1996); Based on quantum erasure setup of Greenberger and Yasin.

Superpositions of States of a Macroscopic Object using an Ancillary

Quantum System:

S. Bose, K. Jacobs, P. L.

Knight,
Phys. Rev. A 59 (5), 3204
(1999). [arXiv: 1997].

Decoherence/partial
coherence is used to certify superposition.

Armour, Blencowe, Schwab, PRL 2002.
Marshall, Simon, Penrose, Bouwmeester, PRL 2003.
Decoherence \& Recoherence is used to certify
superpositions
Bose, PRL 2006.

Gravimetric sensing circumventing thermal noise.

Qvarfort, Serafini, Barker, Bose, Nature Communications 9, 3690 (2018)

Possible to sense acceleration $10^{\wedge}(-15) \mathrm{ms}^{\wedge}(-2) / \mathrm{root}(\mathrm{Hz})$ via optomechanical entanglement

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Diamond bead trapped in an optical trap. The bead contains a spin-1 NV center.

Initial State:

$$
|\beta\rangle|0\rangle
$$

> No cavity, no cooling.

Exploits Spin-Motion coupling mechanism proposed by Rabl et.al. 2009.
van Wezel \& Oosterkamp, 2011.
|+1> $\xrightarrow{ }$
|0> \qquad

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Diamond bead trapped in an optical trap. The bead contains a spin-1 NV center.

No cavity, no cooling.

Step 1:

$$
|\beta\rangle(|+1\rangle+|+1\rangle)
$$

|0>

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Diamond bead trapped in an optical trap. The bead contains a spin-1 NV center.

Time Evolution:
$e^{i \phi_{+}(t)}\left|\beta_{+}(t)\right\rangle|+1\rangle+e^{i \phi_{-}(t)}\left|\beta_{-}(t)\right\rangle|-1\rangle$

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Measuring the relative phase shift between superposed components

Step 3: apply the same very rapid mw pulse as in step 1,
The presence of $\Delta \phi$ gives a modulation of the population of $\mid \mathrm{S}_{\mathrm{z}}=0>$ according to:

$$
|+1\rangle+e^{i \Delta \phi}|-1\rangle \rightarrow \cos \frac{\Delta \phi}{2}|0\rangle+\ldots
$$

For $m=10^{\wedge} 10 \mathrm{amu}$ (nano-crystal), superposition over 1 pm , the phase $\sim \mathrm{O}(1)$
M. Scala, M. S. Kim, G. W. Morley, P. F. Barker, S. Bose, Phys. Rev. Lett. 111, 180403 (2013).

Comment: F. Robicheaux, Phys. Rev. Lett. 118, 108901 (2017).
Response: S. Bose et al, Phys. Rev. Lett. 118, 108902 (2017).

How can we increase the scale of the superposition?

Already done by Ron Folman for atoms!!!: 1. Machluf et. al. Nature Comm. 2013, 2. Margalit et. al. 2018 Free particle in an inhomogeneous magnetic field (acceleration $+a$ or $-a$)

$$
\begin{aligned}
& x_{\sigma}(t, j)=x_{j}(0) \pm \frac{1}{2} a t^{2} \\
= & \frac{a \tau}{4}\left(t-\frac{\tau}{4}\right) \mp \frac{1}{2} a\left(t-\frac{\tau}{4}\right)^{2} \\
= & a\left(\frac{\tau}{4}\right)^{2} \mp \frac{a \tau}{4}\left(t-\frac{3 \tau}{4}\right) \pm \frac{1}{2} a\left(t-\frac{3 \tau}{4}\right)^{2}
\end{aligned}
$$

Same spin signal as long as the same field gradient gives the relative phase

Free flight scheme able to achieve 100 nm separation among superposed components:

Two gravitationally interacting matter-wave interferometers
S. Bose et. al., Phys. Rev. Lett. 119, 240401 (2017);
C. Marletto and V. Vedral, Phys. Rev. Lett. 119, 240402 (2017)

$|L\rangle_{1}$

$|R\rangle_{1}$

$|E\rangle_{2}$

$|R\rangle_{2}$

Consider two neutral test masses held in a superposition, each exactly as a path encoded qubit (states $\mid \mathrm{L}>$ and $\mid \mathrm{R}>$), near each other.

where

$$
\begin{array}{r}
\phi_{R L} \sim \frac{G m_{1} m_{2} \tau}{\hbar(d-\Delta x)}, \phi_{L R} \sim \frac{G m_{1} m_{2} \tau}{\hbar(d+\Delta x)}, \\
\phi_{L L}=\phi_{R R} \sim \frac{G m_{1} m_{2} \tau}{\hbar d}
\end{array}
$$

If they
interact only through the gravitational force

$$
|\Psi(t=\tau)\rangle_{12}=\frac{1}{2}\left(e^{i \phi_{L L}}|L\rangle_{1}|L\rangle_{2}+e^{i \phi_{L R}}|L\rangle_{1}|R\rangle_{2}\right.
$$

$$
\left.+e^{i \phi_{R L}}|R\rangle_{1}|L\rangle_{2}+e^{i \phi_{R R}}|R\rangle_{1}|R\rangle_{2}\right)
$$

$$
=\frac{e^{i \phi_{R R}}}{\sqrt{2}}\left\{|L\rangle_{1} \frac{1}{\sqrt{2}}\left(|L\rangle_{2}+e^{i \Delta \phi_{L R}}|R\rangle_{2}\right)\right.
$$

$$
\left.+|R\rangle_{1} \frac{1}{\sqrt{2}}\left(e^{i \Delta \phi_{R L}}|L\rangle_{2}+|R\rangle_{2}\right)\right\}
$$

The above state is maximally entangled when $\Delta \phi_{L R}+$ $\Delta \phi_{R L} \sim \pi$.

For

$$
d-\Delta x \ll d, \Delta x
$$

we have

$$
\Delta \phi_{R L} \sim \frac{G m_{1} m_{2} \tau}{\hbar(d-\Delta x)} \gg \Delta \phi_{L R}, \Delta \phi_{L L}, \Delta \phi_{R R}
$$

For mass $\sim 10^{\wedge}(-14) \mathrm{kg}$ (microspheres), separation at closest approach of the masses ~ 200 microns (to prevent Casimir interaction), time $\sim \mathbf{1}$ seconds, gives:
Scale of superposition ~ 100 microns, Delta phi_\{RL $\} \sim 1$

Planck's Constant fights Newton's Constant!

Spin Entanglement Witness:

Step 1: SG splitting:

$$
|C\rangle_{j} \frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{j}+|\downarrow\rangle_{j}\right) \rightarrow \frac{1}{\sqrt{2}}\left(|L, \uparrow\rangle_{j}+|R, \downarrow\rangle_{j}\right)
$$

Step 2: Gravitational interaction induced phase accumulation on the joint states of masses $1 \& 2$ (mapped to nuclear spins)

Step 3: SG recombination: $|L, \uparrow\rangle_{j} \rightarrow|C, \uparrow\rangle_{j},|R, \downarrow\rangle_{j} \rightarrow|C, \downarrow\rangle_{j}$

Step 4: Witness spin entangled state:

$$
\begin{aligned}
\left|\Psi\left(t=t_{\text {End }}\right)\right\rangle_{12} & =\frac{1}{\sqrt{2}}\left\{|\uparrow\rangle_{1} \frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{2}+e^{i \Delta \phi_{L R}}|\downarrow\rangle_{2}\right)\right. \\
& \left.+|\downarrow\rangle_{1} \frac{1}{\sqrt{2}}\left(e^{i \Delta \phi_{R L}}|\uparrow\rangle_{2}+|\downarrow\rangle_{2}\right)\right\}|C\rangle_{1}|C\rangle_{2}
\end{aligned}
$$

through the correlations:

$$
\mathcal{W}=\left|\left\langle\sigma_{x}^{(1)} \otimes \sigma_{z}^{(2)}\right\rangle-\left\langle\sigma_{y}^{(1)} \otimes \sigma_{z}^{(2)}\right\rangle\right|
$$

How is this related to the non-classicality of Gravity?

LOCC Maps keep separable states separable (cannot create entanglement!)

Local Operations and Classical Communication (LOCC)

1. Unitary evolution
2. Measurement

Classical mediator of
information/bits

Cannot be classical if the spins in the masses get entangled

What does it imply in the context of low energy effective field theory?

$$
\begin{aligned}
\mathcal{H} & =\sum_{j, \xi} m_{j} c^{2} a_{j, \xi}^{\dagger} a_{j, \xi}+\sum_{\mathbf{k}} \hbar \omega_{k} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \\
& -\hbar \sum_{j, \mathbf{k}, \xi} g_{j, \mathbf{k}} a_{j, \xi}^{\dagger} a_{j, \xi}\left(b_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}_{j, \xi}}+b_{\mathbf{k}}^{\dagger} e^{-i \mathbf{k} \cdot \mathbf{r}_{j, \xi}}\right)
\end{aligned}
$$

Superposition
Coherent States of the gravitational field

Supplementary Materials of Bose et. al. PRL 2017

Superpositions of coherent states of the gravitational field
See also: Christodoulou \& Rovelli, 2018 - Space-time superpositions Marletto \& Vedral, PRL 2017 - Mediator must have noncommuting variables.

Newtonian potential can be thought to be originating from the exchange of virtual (off-shell) gravitons (e.g., Quantum Field Theory in a Nutshell - A. Zee)

Based on this, a fully covariant treatment can be made: Marshman, Mazumdar, Bose, arXiv:1907.01568
How do we know whether the above process is right (i.e. something quantum is exchanged?)

3 assumptions (which were implicit in our proposal):

- Locality of Physical Interactions:

$$
\kappa^{2} h_{\mu \nu}(\vec{r}, t) T^{\mu \nu}(\vec{r}, t)
$$

- Linearized Gravity (not sure this assumption is needed, but safe);

$$
g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu} \quad\left|\kappa h_{\mu \nu}\right| \ll 1
$$

- A reasonable definition of classicality:

$$
P_{j},\left\{|j\rangle\langle j|, h_{\mu \nu}^{j}\right\}
$$

Marshman, Mazumdar, Bose, arXiv:1907.01568

$$
\begin{aligned}
\Delta S\left(h_{00}\right)= & m c^{2} a \tau_{1}^{3}\left(\partial_{x} h_{00}+\frac{23}{60} a \tau_{1}^{2} \partial_{x} \partial_{x} h_{00}+\ldots\right) \\
\Delta S\left(h_{0 j}\right)= & m c a v_{y}\left(-2 \tau_{1}^{3} \partial_{y} h_{0 x}+2 \tau_{1}^{3} \partial_{x} h_{0 y}\right. \\
& \left.+\frac{23}{30} a \tau_{1}^{5} \partial_{x} \partial_{x} h_{0 y}+\ldots\right) \\
\Delta S\left(h_{i j}\right)= & \frac{-2}{3} h_{x x} m a^{2} \tau_{1}^{3}+\ldots=\frac{-2}{3} h_{x x} m v_{x}^{2} \tau_{1}+\ldots
\end{aligned}
$$

a mass of $10^{-16} \mathrm{~kg}$ in $\mathrm{a} \sim$ 1 mm interferometer with interrogation time $\tau_{1} \sim 100 \mathrm{~ms}$ gives a detection of acceleration with sensitivity down to $10^{-16} \mathrm{~ms}^{-2} \mathrm{~Hz}^{-1 / 2}$ when a flux of $N=200$ objects

Some papers

- Large mass, small scale of superpositions:
M. Scala, M. S. Kim, G. W. Morley, P. F. Barker, S. Bose, Phys. Rev. Lett. 111, 180403 (2013).
- Large mass, large scale superpositions:
C. Wan, M. Scala, G. W. Morley, ATM. A. Rahman, H. Ulbricht, J. Bateman, P. F. Baker, S. Bose, M. S. Kim, Phys. Rev. Lett. 117, 143003 (2016).
- Spin Entanglement Witness for Quantum Gravity:
S. Bose, A. Mazumdar, G. W.Morley, H. Ulbricht, M. Toros, M. Paternostro, P. F. Barker, A. Geraci, M. S. Kim, G. J. Milburn, Phys. Rev. Lett. 119, 240401 (2017).

Related work: C. Marletto and V. Vedral, Phys. Rev. Lett. 119, 240402 (2017)

- Gravitational wave detection with meter scale sensor: Ryan J. Marshman, Anupam Mazumdar, Gavin W. Morley, Peter F. Barker, Steven Hoekstra, Sougato Bose, arXiv:1807.10830
- Assumptions spelt out \& covariant treatment: Marshman, Mazumdar, Bose, arXiv:1907.01568; Answers to a few common qs: Marletto \& Vedral, arXiv:1907.08994.pdf

