A new test of gravitational redshift using eccentric Galileo 5 & 6 satellites

Christophe Le Poncin-Lafitte SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE

Time Machine Factory 2019 La Turin, Italy, September 22–25 2019

Einstein Equivalence Principle (EEP)

General Relativity is based on 2 fundamental principles:

- the Einstein Equivalence Principle (EEP)
- the Einstein field equations

Following Will (1993), EEP can be divided into three sub-principles

- WEP/UFF: If any uncharged test body is placed at an initial event in space-time and given an initial velocity there, then its subsequent trajectory will be independent of its internal structure and composition.
- LPI: The outcome of any local non-gravitational test experiment is independent of where and when in the universe it is performed.
- LLI: The outcome of any local non-gravitational test experiment is independent of the velocity of the (freely falling) apparatus.

Einstein Equivalence Principle (EEP)

General Relativity is based on 2 fundamental principles:

- the Einstein Equivalence Principle (EEP)
- the Einstein field equations

Following Will (1993), EEP can be divided into three sub-principles

- WEP/UFF: If any uncharged test body is placed at an initial event in space-time and given an initial velocity there, then its subsequent trajectory will be independent of its internal structure and composition.
- LPI: The outcome of any local non-gravitational test experiment is independent of where and when in the universe it is performed.
- LLI: The outcome of any local non-gravitational test experiment is independent of the velocity of the (freely falling) apparatus.

Motivation: a quantum theory of gravitation

Figure from Altschul2015.

C. LE PONCIN-LAFITTE (Obs.Paris)

• Tests of Lorentz Invariance using comparisons of

- atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf1997)
- optical clocks linked with optical fibres (Delva2017e)
- Test of Lorentz Invariance in the Matter Sector (Wolf2006; Hohensee2011; Pihan2017; Sanner2019)

- Tests of Lorentz Invariance using comparisons of
 - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf1997)
 - optical clocks linked with optical fibres (Delva2017e)
- Test of Lorentz Invariance in the Matter Sector (Wolf2006; Hohensee2011; Pihan2017; Sanner2019)
- Test of LPI searching for variations in the constants of Nature
 - linear temporal drift (Guena2012; Rosenband2008; Leefer2013; Godun2014; Huntemann2014)
 - harmonic temporal variation (VanTilburg2015; Hees2016)
 - spatial variation w.r.t. the Sun gravitational potential (Guena2012; Peil2013; Leefer2013; Ashby2007)
 - Transients (Derevianko2014; Wcislo2016; Roberts2017; Wcislo2018)

- Tests of Lorentz Invariance using comparisons of
 - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf1997)
 - optical clocks linked with optical fibres (Delva2017e)
- Test of Lorentz Invariance in the Matter Sector (Wolf2006; Hohensee2011; Pihan2017; Sanner2019)
- Test of LPI searching for variations in the constants of Nature
 - linear temporal drift (Guena2012; Rosenband2008; Leefer2013; Godun2014; Huntemann2014)
 - harmonic temporal variation (VanTilburg2015; Hees2016)
 - spatial variation w.r.t. the Sun gravitational potential (Guena2012; Peil2013; Leefer2013; Ashby2007)
 - Transients (Derevianko2014; Wcislo2016; Roberts2017; Wcislo2018)
- Test of LPI with a clock redshift experiment (Vessot1989)

- Tests of Lorentz Invariance using comparisons of
 - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf1997)
 - optical clocks linked with optical fibres (Delva2017e)
- Test of Lorentz Invariance in the Matter Sector (Wolf2006; Hohensee2011; Pihan2017; Sanner2019)
- Test of LPI searching for variations in the constants of Nature
 - linear temporal drift (Guena2012; Rosenband2008; Leefer2013; Godun2014; Huntemann2014)
 - harmonic temporal variation (VanTilburg2015; Hees2016)
 - spatial variation w.r.t. the Sun gravitational potential (Guena2012; Peil2013; Leefer2013; Ashby2007)
 - Transients (Derevianko2014; Wcislo2016; Roberts2017; Wcislo2018)
- Test of LPI with a clock redshift experiment (Vessot1989)

Gravity Probe A (GP-A) (1976)

- Test of LPI with a clock redshift test (Vessot1979; Vessot1980; Vessot1989)
- Continuous two-way microwave link between a spaceborne hydrogen maser clock and ground hydrogen masers
- ullet One parabola of the rocket $\lesssim 2$ hours of data
- \bullet Frequency shift verified to 7×10^{-5}
- \bullet Gravitational redshift verified to 1.4×10^{-4}

Tests of Local Position Invariance

(Will2014)

- H-Maser Gravity Probe A (1976)
- Null tests: 2 different *co-located* clocks in the Sun potential

Tests of Local Position Invariance

(Will2014)

- H-Maser Gravity Probe A (1976)
- Null tests: 2 different *co-located* clocks in the Sun potential
- New test: Galileo eccentric satellites (Delva2018c; Herrmann2018)

Tests of Local Position Invariance

(Will2014)

- H-Maser Gravity Probe A (1976)
- Null tests: 2 different *co-located* clocks in the Sun potential
- New test: Galileo eccentric satellites (Delva2018c; Herrmann2018)

- European Global Navigation Satellite System (GNSS) $(22.2 \times 10^9$ euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];

- European Global Navigation Satellite System (GNSS) $(22.2 \times 10^9$ euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];
- A global network of sensor stations receiving information from the Galileo satellites;

- European Global Navigation Satellite System (GNSS) $(22.2 \times 10^9$ euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];
- A global network of sensor stations receiving information from the Galileo satellites;
- The control centres computing information and synchronising the time signal of the satellites;

- European Global Navigation Satellite System (GNSS) $(22.2 \times 10^9$ euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes [actually 26];
- A global network of sensor stations receiving information from the Galileo satellites;
- The control centres computing information and synchronising the time signal of the satellites;

• ESA: GNSS Science Support Centre (GSSC: gssc.esa.int) and GNSS Science Advisory Committee (GSAC)

 More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in Earth Science, Fundamental Physics, Metrology and many other fields

- ESA: GNSS Science Support Centre (GSSC: gssc.esa.int) and GNSS Science Advisory Committee (GSAC)
- More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in Earth Science, Fundamental Physics, Metrology and many other fields
- Intermediate batch 2024-2026 (6 sats): experimental instruments onboard (optical ISL, active LRR, accelerometer, VLBI transmitter...)

- ESA: GNSS Science Support Centre (GSSC: gssc.esa.int) and GNSS Science Advisory Committee (GSAC)
- More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in Earth Science, Fundamental Physics, Metrology and many other fields
- Intermediate batch 2024-2026 (6 sats): experimental instruments onboard (optical ISL, active LRR, accelerometer, VLBI transmitter...)
- 2nd generation 2027-2029 (10 sats)

- ESA: GNSS Science Support Centre (GSSC: gssc.esa.int) and GNSS Science Advisory Committee (GSAC)
- More than 100 GNSS satellites, with global coverage and continuous measurements: major contributions in Earth Science, Fundamental Physics, Metrology and many other fields
- Intermediate batch 2024-2026 (6 sats): experimental instruments onboard (optical ISL, active LRR, accelerometer, VLBI transmitter...)
- 2nd generation 2027-2029 (10 sats)

The story of Galileo satellites 201 & 202

- Galileo satellites 201 & 202 were launched with a Soyuz rocket on 22 august 2014 on the wrong orbit due to a technical problem
- Launch failure was due to a temporary interruption of the joint hydrazine propellant supply to the thrusters, caused by freezing of the hydrazine, which resulted from the proximity of hydrazine and cold helium feed lines.

The story of Galileo satellites 201 & 202

- Galileo satellites 201 & 202 were launched with a Soyuz rocket on 22 august 2014 on the wrong orbit due to a technical problem
- Launch failure was due to a temporary interruption of the joint hydrazine propellant supply to the thrusters, caused by freezing of the hydrazine, which resulted from the proximity of hydrazine and cold helium feed lines.

Galileo satellites 201&202 orbit

C. LE PONCIN-LAFITTE (Obs.Paris)

Galileo satellites 201&202 orbit

Galileo sats 201&202 launched in 08/22/2014 on the wrong orbit due to a technical problem \Rightarrow GRedshift test (GREAT Study)

Why Galileo 201 & 202 are perfect candidates?

 An elliptic orbit induces a periodic modulation of the clock proper time at orbital frequency

$$\tau(t) = \left(1 - \frac{3Gm}{2ac^2}\right)t - \frac{2\sqrt{Gma}}{c^2}e\sin E(t) + \text{Cster}$$

- Very good stability of the on-board atomic clocks → test of the variation of the redshift
- Satellite life-time → accumulate the relativistic effect on the long term
- Visibility
 → the satellite are permanently monitored by several ground receivers

Why Galileo 201 & 202 are perfect candidates?

 An elliptic orbit induces a periodic modulation of the clock proper time at orbital frequency

$$\tau(t) = \left(1 - \frac{3Gm}{2ac^2}\right)t - \frac{2\sqrt{Gma}}{c^2}e\sin E(t) + \text{Cster}$$

- Very good stability of the on-board atomic clocks → test of the variation of the redshift
- Satellite life-time \rightarrow accumulate the relativistic effect on the long term
- Visibility
 → the satellite are permanently monitored by several ground receivers

- Orbit and clock solutions: ESA/ESOC
- Transformation of orbits into GCRS with SOFA routines
- Theoretical relativistic shift and LPI violation

$$x_{
m redshift} = \int \left[1 - rac{v^2}{2c^2} - rac{U_E + U_T}{c^2}
ight] dt$$
; $x_{
m LPI} = -lpha \int rac{U_E + U_T}{c^2} dt$

Peak-to-peak effect \sim 400 ns: model and systematic effects at orbital period should be controlled down to 4 ps in order to have $\delta \alpha \sim 1 \times 10^{-5}$

Choice of clock

• GAL-202: only PHM (RAFS is removed) ightarrow 649 days of data

C. LE PONCIN-LAFITTE (Obs.Paris)

Fit of the LPI violation model with Linear Least Square in a Monte Carlo routine: 1 GR violation parameter (α) + 2 parameters per day fitted (daily clock offset a_i and drift b_i)

$$x = \sum_{i} f_i(t)(a_i + b_i t) - \alpha \int \frac{U_E + U_T}{c^2} dt$$

	LPI violation parameter $[> 10^{-5}]$	Statistical uncertainty (Monto Carlo) $[\times 10^{-5}]$		
		(Monte-Carlo) [×10]		
GAL-201	-1.12	1.48		
GAL-202	+6.56	1.41		

The bias is significant for GAL-202

 $\textcircled{\sc l}$ Effects acting on the frequency of the reference ground clock \rightarrow can be safely neglected

② Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations

- \blacksquare Effects acting on the frequency of the reference ground clock \rightarrow can be safely neglected
- ② Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations
- Effects acting directly on the frequency of the space clock (temperature and magnetic field variations on board the Galileo satellites)

- \blacksquare Effects acting on the frequency of the reference ground clock \rightarrow can be safely neglected
- ② Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations
- Effects acting directly on the frequency of the space clock (temperature and magnetic field variations on board the Galileo satellites)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution

- 0 Effects acting on the frequency of the reference ground clock \rightarrow can be safely neglected
- ② Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations
- Effects acting directly on the frequency of the space clock (temperature and magnetic field variations on board the Galileo satellites)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution

We model systematic effects and fit for each the corresponding LPI violation parameters \rightarrow conservative approach

- \blacksquare Effects acting on the frequency of the reference ground clock \rightarrow can be safely neglected
- ② Effects on the links (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...) → very likely to be uncorrelated with the looked for signal, averages with the number of ground stations
- Effects acting directly on the frequency of the space clock (temperature and magnetic field variations on board the Galileo satellites)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution

We model systematic effects and fit for each the corresponding LPI violation parameters \rightarrow conservative approach

Local systematics: Temperature

Poor access to environmental data, but environmental sensitivity of the PHMs has been characterized on the ground (see e.g. **rocha:2012rz**)

Temperature systematics

- Temperature sensitivity is assumed $< 2 \times 10^{-14}$ / K (rel.freq.)
- Temperature systematics is supposed to be maximum when the Sun is in the $\pm z$ direction, and minimum when the Sun is in the $+x_{IGS}$ direction

from Montenbruck2015

Local systematics: Magnetic Field

Magnetic Field systematics

- Magnetic Field along sat. trajectory calculated with International Geomagnetic Reference Field (IGRF) model
- Projection of Magnetic Field into the sat. local frame
- Magnetic Field sensitivity is assumed $< 3 \times 10^{-13}$ / G (rel.freq.) along each local frame axis

from Montenbruck2015

Orbit systematics

Fit the LPI violation model on Satellite Laser Ranging (SLR) residuals

- Orbital errors are dominated by Solar Radiation Pressure mismodelling
- 1 year SLR Campaign thanks to International Laser Ranging Service

• SLR residuals give the range error \Rightarrow clock error in a 1-way time transfer

	LPI violat $[\times 10^{-5}]$	Tot unc $[\times 10^{-5}]$	Stat unc $[\times 10^{-5}]$	Orbit unc $[\times 10^{-5}]$	Temp unc $[\times 10^{-5}]$	$\begin{array}{c} MF \text{ unc} \\ [\times 10^{-5}] \end{array}$
GAL-201	-0.77	2.73	1.48	1.09	0.59	1.93
GAL-202	6.75	5.62	1.41	5.09	0.13	1.92
Combined	0.19	2.48	1.32	0.70	0.55	1.91

- Local Position Invariance is confirmed down to 2.5×10^{-5} uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation

	LPI violat $[\times 10^{-5}]$	Tot unc $[\times 10^{-5}]$	Stat unc $[\times 10^{-5}]$	Orbit unc $[\times 10^{-5}]$	Temp unc $[\times 10^{-5}]$	$\begin{array}{c} MF \text{ unc} \\ [\times 10^{-5}] \end{array}$
GAL-201	-0.77	2.73	1.48	1.09	0.59	1.93
GAL-202	6.75	5.62	1.41	5.09	0.13	1.92
Combined	0.19	2.48	1.32	0.70	0.55	1.91

- Local Position Invariance is confirmed down to 2.5×10^{-5} uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)

	LPI violat $[\times 10^{-5}]$	Tot unc $[\times 10^{-5}]$	Stat unc $[\times 10^{-5}]$	Orbit unc $[\times 10^{-5}]$	Temp unc $[\times 10^{-5}]$	$\begin{array}{c} MF \text{ unc} \\ [\times 10^{-5}] \end{array}$
GAL-201	-0.77	2.73	1.48	1.09	0.59	1.93
GAL-202	6.75	5.62	1.41	5.09	0.13	1.92
Combined	0.19	2.48	1.32	0.70	0.55	1.91

- Local Position Invariance is confirmed down to 2.5×10^{-5} uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)
- Nice outreach video by Derek Muller on Veritasium (youtube channel)

	LPI violat $[\times 10^{-5}]$	Tot unc $[\times 10^{-5}]$	Stat unc $[\times 10^{-5}]$	Orbit unc $[\times 10^{-5}]$	Temp unc $[\times 10^{-5}]$	$\begin{array}{c} MF \text{ unc} \\ [\times 10^{-5}] \end{array}$
GAL-201	-0.77	2.73	1.48	1.09	0.59	1.93
GAL-202	6.75	5.62	1.41	5.09	0.13	1.92
Combined	0.19	2.48	1.32	0.70	0.55	1.91

- Local Position Invariance is confirmed down to 2.5×10^{-5} uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)
- Nice outreach video by Derek Muller on Veritasium (youtube channel)