Probing Regular Black Hole Spacetime with Scalar Field

Tayebeh Tahamtan

Sept. 2019

Motivation

- Having naked singularity solution or irregular horizon when scalar field is present was predicted already by J. E. Chase in 1970,

"Chase Theorem":

Any static spherically symmetric vacuum solution minimally coupled to scalar field can not have a regular horizon, if there exists any horizon it would also be the locus of a true singularity.

- Nonlinear Electrodynamics as a good candidate for non-vacuum situation, analysis of gravitating case rather than perturbative approach

Fields Equations

Lagrangian describing a scalar field minimally coupled to gravity and also Nonlinear Electrodynamics

$$
S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left[\mathcal{R}+\nabla_{\mu} \varphi \nabla^{\mu} \varphi+\mathcal{L}(F)\right]
$$

- φ Real Massless Scalar Field
- $F=F_{\mu \nu} F^{\mu \nu}$ Electromagnetic Field Invariant

$$
\begin{gathered}
\Downarrow \\
G^{\mu}{ }_{\nu}={ }^{\mathrm{SF}} T^{\mu}{ }_{\nu}+{ }^{\mathrm{NE}} T^{\mu}{ }_{\nu}
\end{gathered}
$$

Static Scalar Field

Assuming the static spherically symmetric metric

$$
\mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{f(r)}+R(r)^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

The energy momentum tensor

$$
\mathrm{SF}^{T^{\mu}}{ }_{\nu}=\frac{f \varphi_{, r}^{2}}{2} \operatorname{diag}\{-1,1,-1,-1\}
$$

The wave equations of Radial scalar field

$$
\square \varphi=0
$$

where \square is a standard d'Alembert operator.

$$
\begin{aligned}
f(r) & =1 \\
R(r) & =r^{2}-\chi^{2} \\
\varphi(r) & =\frac{1}{\sqrt{2}} \ln \left\{\frac{r-\chi}{r+\chi}\right\}
\end{aligned}
$$

Properties of Scalar Field Solution

- $r \rightarrow \infty$ the scalar field is vanishing
- Asymptotically flat
- The solution is representing a time-like naked singularity
- Quantization of the spacetime to remove the singularity
- In dynamic case for some parameters there exist event horizon!

Janis, Newman and Winicour Solution

$$
\mathrm{d} s^{2}=-f(\tilde{R}) d t^{2}+\frac{1}{f(\tilde{R})}\left\{d \tilde{R}^{2}+\left(\tilde{R}^{2}-M^{2}\right) d \Omega^{2}\right\}
$$

in which

$$
\begin{aligned}
f(\tilde{R}) & =\left[\frac{\tilde{R}-M}{\tilde{R}+M}\right]^{\frac{1}{\mu}} \\
\phi & =\sqrt{\left(\mu^{2}-1\right) / 2} \ln f(\tilde{R})
\end{aligned}
$$

- When $\mu \rightarrow \infty$, it would be our solution
- The event horizon is a singular point

Phys. Rev. Lett. 20, 878 (1968) ;
I.Z. Fisher, Zh. Eksp. Teor. Fiz. 18, 636 (1948)

Introduction to Nonlinear Electrodynamics

The idea of Non-Linear Electrodynamics (NED) is about a century old but it was made popular in 1930s by Born and Infeld.
The main goal was solving the point charge singularity:

$$
\frac{q}{r^{2}} \Rightarrow \frac{q}{r^{2}+a^{2}}
$$

- Resolve the spacetime singularity \Rightarrow Regular Black Holes
- Wide application in different theories

Different forms of Nonlinear Electrodynamics

- Born-Infeld (BI) theory
- Hoffmann-Born-Infeld (HBI) theory
- Logarithmic Lagrangian
- Power Maxwell (PM)
and many many other models!

The energy momentum tensor

$$
\begin{gathered}
T_{\nu}^{\mu}=\frac{1}{2}\left\{\delta_{\nu}^{\mu} \mathcal{L}-\left(F_{\nu \lambda} F^{\mu \lambda}\right) \mathcal{L}_{F}\right\} \\
\mathcal{L}_{F}=\frac{d \mathcal{L}(F)}{d F}
\end{gathered}
$$

The modified Maxwell field equations

$$
\partial_{\mu}\left(\sqrt{-g} \mathcal{L}_{F} F^{\mu \nu}\right)=0
$$

Electromagnetic Field Invariant

$$
F=F_{\mu \nu} F^{\mu \nu}
$$

Born-Infeld

Born and Infeld Lagrangian:

$$
\mathcal{L}_{B I}=4 \beta^{2}\left(1-\sqrt{1+\frac{F}{2 \beta^{2}}}\right)
$$

- β is BI parameter
- $\lim _{\beta \rightarrow \infty} \mathcal{L}_{B I}=-F$ (Maxwell limit)
- strong field limit $\rightarrow \mathcal{L}_{B I} \sim \sqrt{F}$
- for Electric Charge $q_{e}, F=-\frac{2 q_{e}{ }^{4}}{r^{4}+q_{e}{ }^{4} / \beta^{2}} \Rightarrow$ "Regular"

Regular Black Holes

Generic solution for having RBH

$$
f(r)=1-\frac{2 C_{1} r^{\sigma-1}}{\left(r^{\beta}+q\right)^{\frac{\sigma}{\beta}}}
$$

where $\sigma>1, \beta>0$.

- If $q=0$ the solution is Schwarzschild
- If $\sigma=3$ and $\beta=2$ the solution is Bardeen
- If $\sigma=3$ and $\beta=3$ the solution is Hayward
- $F \Rightarrow$ "Singular"
- Spacetime and the EMT \Rightarrow "Regular"

Square Root Model $\mathcal{L}=-\sqrt{F}$

Maxwell 2-form

$$
\mathbf{F}=F_{\theta \phi} \mathrm{d} \theta \wedge \mathrm{~d} \phi,
$$

where $F_{\theta \phi}=q_{m} \sin \theta$ and $F=\frac{2 q_{m}^{2}}{R^{4}}$
The energy momentum tensor

$$
{ }^{\mathrm{NE}} T^{\mu}{ }_{\nu}=\operatorname{diag}\left\{-\frac{\sqrt{F}}{2},-\frac{\sqrt{F}}{2}, 0,0\right\}
$$

The corresponding solution is

$$
\begin{aligned}
f(r) & =\alpha-\frac{2 m}{r} \\
R(r) & =r
\end{aligned}
$$

where $\alpha=1-\sqrt{2} q_{m}$

Properties of NE Solution

- $F=\frac{2 q_{m}{ }^{2}}{r^{4}} \Rightarrow$ "Singular"
- The corresponding metric is not asymptotically flat
- It is a Black Hole solution
- Similar to the solution of geometry outside the core of so-called global monopole

Scalar Field and NE

Metric functions

$$
\begin{aligned}
f(r) & =\frac{C_{0}}{\sqrt{2} \chi} \\
R(r) & =r^{2}-\chi^{2}
\end{aligned}
$$

Constraint Eq: $G^{t}{ }_{t}-\left({ }^{\mathrm{NE}} T^{t}{ }_{t}+{ }^{\mathrm{SF}} T^{t}{ }_{t}\right)=0$,

$$
f\left(\frac{R_{, r}}{R}\right)^{2}+\frac{R_{, r}}{R} f_{, r}-\frac{1}{R^{2}}-f \frac{R_{, r r}}{R}+\frac{q_{m}}{\sqrt{2}} \frac{1}{R^{2}}=0
$$

which leads to

$$
q_{m}=\frac{C_{0}}{\chi}-\sqrt{2}
$$

Properties: Scalar Field and NE

- If $f=1$ then $q_{m}=0$
- No Horizon unless scalar field vanishes identically
- Kretschmann scalar is diverging at $r=\chi$

Different Model of NE

Scalar Field + Regular Models (magnetic charge)
\{Bardeen, Hayward, Generic Model\}

No Black hole solutions

Different coordinates:

$$
\mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+\frac{h(r)}{f(r)} \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Solution:

$$
\begin{aligned}
f & =\frac{f_{0} h}{\sqrt{r^{3} h_{, r}}} \\
\sqrt{-g} & =\sqrt{h} r^{2} \sin \theta
\end{aligned}
$$

Ricci Scalar:

$$
\begin{aligned}
& \text { Ricci }=\frac{2}{r^{2}}+\frac{f_{0}}{4 \sqrt{r^{5} h_{, r}}}\left\{2 r\left(\frac{h_{, r}}{h}\right)^{2}+\frac{h_{, r}-r h_{, r r}}{h}\right. \\
& \left.+\frac{1}{r 3\left(h_{, r}\right)^{2}}\left[r^{2}\left(2\left(h_{, r r r}\right)^{3} h_{, r}-3\left(h_{, r r}\right)^{2}\right)+\left(r h_{, r}^{2}\right)_{, r}\right]\right\}
\end{aligned}
$$

Assumptions:

- having horizon at $r=r_{0} \rightarrow h\left(r_{0}\right)=0$
- $h_{, r}\left(r_{0}\right)$ is finite and nonzero

Results:

- Vanishing h means diverging curvature scalars
- Highlighted terms would be zero:

$$
h=-\frac{h_{0}}{r^{2}+h_{1}} \Rightarrow\left\{\begin{array}{l}
\text { Imaginary metric } \\
f \sim 1 / r^{2}
\end{array}\right.
$$

Wave equation for Black hole solutions close to event horizon

Scalar perturbation obeying the Klein-Gordon equation,

$$
\square \Psi(t, r, \theta, \phi)=0
$$

for the Static Spherical Symmetric (with $R=r$)

$$
f \Psi_{, r r}+\left(f_{, r}+\frac{2 f}{r}\right) \Psi_{, r}-\frac{\Psi_{, t t}}{f}+\frac{1}{r^{2}}\left\{\Psi_{, \theta \theta}+\cot \theta \Psi_{, \theta}+\frac{\Psi_{, \phi \phi}}{\sin ^{2} \theta}\right\}=0
$$

By applying separation variables

$$
\Psi(t, r, \theta, \phi)=e^{-i \omega t} \frac{\psi(r)}{r} Y_{I}^{m}(\theta, \phi)
$$

Radial equation is

$$
f \psi_{, r r}+f_{, r} \psi_{, r}-\left(\frac{I(I+1)}{r^{2}}-\frac{\omega^{2}}{f}+\frac{f_{, r}}{r}\right) \psi=0
$$

Since we are interested in perturbation around horizon, we assume

$$
f=A\left(r-r_{0}\right)+O\left(\left(r-r_{0}\right)^{2}\right)
$$

In the end

$$
\psi=\left(r-r_{0}\right)^{\frac{-I \omega}{A}}\left[\psi_{0} r^{n_{1}}{ }_{2} F_{1}\left(a_{1}, b_{1} ; n_{1} ; \frac{r}{r_{0}}\right)+\psi_{1} r^{n_{2}}{ }_{2} F_{1}\left(a_{2}, b_{2} ; n_{2} ; \frac{r}{r_{0}}\right)\right]
$$

- $\left(r-r_{0}\right)^{\frac{-1 \omega}{A}}$ is the dominant term, so $\psi_{, r} \sim\left(r-r_{0}\right)^{-1}$
- diverging stress energy momentum tensor of the scalar field
- generic test scalar field energy momentum tensor blows up on the horizon

Conclusions

- Chase theorem applies for NE sources
- test scalar field EMT blows up generally on event horizon
- gravitating scalar fields with NE produce singular horizons
- explicit solution for square root Lagrangian mimicks global monopole with modified singularity

THANK YOU

