Probing Regular Black Hole Spacetime with Scalar Field

Tayebeh Tahamtan

Sept. 2019

Motivation

 Having naked singularity solution or irregular horizon when scalar field is present was predicted already by J. E. Chase in 1970,

"Chase Theorem":

Any static spherically symmetric vacuum solution minimally coupled to scalar field can not have a regular horizon, if there exists any horizon it would also be the locus of a true singularity.

 Nonlinear Electrodynamics as a good candidate for non-vacuum situation, analysis of gravitating case rather than perturbative approach

Fields Equations

Lagrangian describing a scalar field minimally coupled to gravity and also Nonlinear Electrodynamics

$$S=rac{1}{2}\int d^4x\sqrt{-g}[\mathcal{R}+
abla_\muarphi
abla^\muarphi+\mathcal{L}(F)]$$

• φ Real Massless Scalar Field • $F = F_{\mu\nu}F^{\mu\nu}$ Electromagnetic Field Invariant

 $\downarrow \\ G^{\mu}{}_{\nu} = {}^{\mathrm{SF}}T^{\mu}{}_{\nu} + {}^{\mathrm{NE}}T^{\mu}{}_{\nu}$

Static Scalar Field

Assuming the static spherically symmetric metric

$$\mathrm{d}s^2 = -f(r)\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + R(r)^2\,(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2)$$

The energy momentum tensor

$$^{
m SF}{T^{\mu}}_{
u}=rac{f~arphi_{,r}^2}{2}$$
diag $\{-1,1,-1,-1\}$

The wave equations of Radial scalar field

 $\Box \varphi = \mathbf{0}$

where \Box is a standard d'Alembert operator.

$$f(r) = 1$$

$$R(r) = r^2 - \chi^2$$

$$\varphi(r) = \frac{1}{\sqrt{2}} \ln \left\{ \frac{r - \chi}{r + \chi} \right\}$$

Properties of Scalar Field Solution

- $r
 ightarrow \infty$ the scalar field is vanishing
- Asymptotically flat
- The solution is representing a time-like naked singularity
- Quantization of the spacetime to remove the singularity
- In dynamic case for some parameters there exist event horizon!

Janis, Newman and Winicour Solution

$$\mathrm{d}s^2 = -f(\tilde{R})dt^2 + rac{1}{f(\tilde{R})}\left\{d\tilde{R}^2 + (\tilde{R}^2 - M^2)d\Omega^2\right\}$$

in which

$$f(\tilde{R}) = \left[\frac{\tilde{R} - M}{\tilde{R} + M}\right]^{\frac{1}{\mu}}$$
$$\phi = \sqrt{(\mu^2 - 1)/2} \ln f(\tilde{R})$$

- When $\mu
 ightarrow \infty$, it would be our solution
- The event horizon is a singular point

Phys. Rev. Lett. **20**, 878 (1968) ; I.Z. Fisher, Zh. Eksp. Teor. Fiz. **18**, 636 (1948)

Introduction to Nonlinear Electrodynamics

The idea of Non-Linear Electrodynamics (NED) is about a century old but it was made popular in 1930s by Born and Infeld. The main goal was solving the point charge singularity:

$$\frac{q}{r^2} \Rightarrow \frac{q}{r^2 + a^2}$$

• Resolve the spacetime singularity \Rightarrow Regular Black Holes

Wide application in different theories

Different forms of Nonlinear Electrodynamics

- Born-Infeld (BI) theory
- Hoffmann-Born-Infeld (HBI) theory
- Logarithmic Lagrangian
- Power Maxwell (PM)

and many many other models!

The energy momentum tensor

$$T^{\mu}_{
u}=rac{1}{2}\{\delta^{\mu}_{
u}\mathcal{L}-(F_{
u\lambda}F^{\mu\lambda})\mathcal{L}_{F}\}$$

$$\mathcal{L}_F = rac{d\mathcal{L}(F)}{dF}$$

The modified Maxwell field equations

$$\partial_{\mu}(\sqrt{-g}\mathcal{L}_{F}F^{\mu
u})=0$$

Electromagnetic Field Invariant

$$F = F_{\mu\nu}F^{\mu\nu}$$

Born-Infeld

Born and Infeld Lagrangian:

$$\mathcal{L}_{BI} = 4eta^2\left(1-\sqrt{1+rac{\mathcal{F}}{2eta^2}}
ight)$$

- β is BI parameter
- $\lim_{\beta \to \infty} \mathcal{L}_{BI} = -F$ (Maxwell limit)
- ullet strong field limit $o \mathcal{L}_{BI} \sim \sqrt{F}$
- for Electric Charge q_e , $F = -\frac{2q_e^4}{r^4 + q_e^4/\beta^2} \Rightarrow "Regular"$

Regular Black Holes

Generic solution for having RBH

$$f(r) = 1 - rac{2C_1 r^{\sigma-1}}{(r^eta+q)^{rac{\sigma}{eta}}}$$

where $\sigma > 1, \beta > 0$.

- If q = 0 the solution is Schwarzschild
- If $\sigma = 3$ and $\beta = 2$ the solution is Bardeen
- If $\sigma = 3$ and $\beta = 3$ the solution is Hayward
- $F \Rightarrow$ "Singular"
- Spacetime and the EMT \Rightarrow "Regular"

Square Root Model $\mathcal{L} = -\sqrt{F}$ Maxwell 2-form

 $\mathbf{F} = F_{\theta\phi} \,\mathrm{d}\theta \wedge \mathrm{d}\phi,$

where $F_{\theta\phi} = q_m \sin \theta$ and $F = \frac{2 q_m^2}{R^4}$ The energy momentum tensor

$$^{\mathrm{NE}}{T^{\mu}}_{
u}=\mathit{diag}\left\{ -rac{\sqrt{F}}{2},-rac{\sqrt{F}}{2},0,0
ight\}$$

The corresponding solution is

$$f(r) = \alpha - \frac{2m}{r}$$
$$R(r) = r$$

where $\alpha = 1 - \sqrt{2} q_m$

Properties of NE Solution

- $F = \frac{2 q_m^2}{r^4} \Rightarrow$ "Singular"
- The corresponding metric is not asymptotically flat
- It is a Black Hole solution
- Similar to the solution of geometry outside the core of so-called global monopole

Scalar Field and NE

Metric functions

$$f(r) = \frac{C_0}{\sqrt{2}\chi}$$
$$R(r) = r^2 - \chi^2$$

Constraint Eq: $G^t{}_t - ({}^{\operatorname{NE}}T^t{}_t + {}^{\operatorname{SF}}T^t{}_t) = 0$,

$$f\left(\frac{R_{,r}}{R}\right)^{2} + \frac{R_{,r}}{R}f_{,r} - \frac{1}{R^{2}} - f\frac{R_{,rr}}{R} + \frac{q_{m}}{\sqrt{2}}\frac{1}{R^{2}} = 0$$

which leads to

$$q_m = \frac{C_0}{\chi} - \sqrt{2}$$

Properties: Scalar Field and NE

- If f = 1 then $q_m = 0$
- No Horizon unless scalar field vanishes identically
- Kretschmann scalar is diverging at $r = \chi$

Different Model of NE

Scalar Field + Regular Models (magnetic charge)

{Bardeen, Hayward, Generic Model} Long Eq.s Not Explicit Solu.

NOT EVEN BLACK HOLE SOLUTION

Several constraints

No Black hole solutions

Different coordinates:

$$\mathrm{d}s^2 = -f(r)\,\mathrm{d}t^2 + \frac{h(r)}{f(r)}\,\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2$$

Solution:

$$f = \frac{f_0 h}{\sqrt{r^3 h_{,r}}}$$
$$\sqrt{-g} = \sqrt{h} r^2 \sin \theta$$

Ricci Scalar:

$$Ricci = \frac{2}{r^2} + \frac{f_0}{4\sqrt{r^5 h_{,r}}} \left\{ 2r \left(\frac{h_{,r}}{h}\right)^2 + \frac{h_{,r} - r h_{,rr}}{h} + \frac{1}{r^3 (h_{,r})^2} \left[r^2 \left(2(h_{,rrr})^3 h_{,r} - 3(h_{,rr})^2 \right) + (r h_{,r}^2)_{,r} \right] \right\}$$

Assumptions:

- having horizon at $r = r_0 \rightarrow h(r_0) = 0$
- $h_{,r}(r_0)$ is finite and nonzero

Results:

- Vanishing h means diverging curvature scalars
- Highlighted terms would be zero:

$$h = -rac{h_0}{r^2 + h_1} \Rightarrow egin{cases} {
m Imaginary metric} & & \ f \sim 1/r^2 \end{array}$$

С

Wave equation for Black hole solutions close to event horizon

Scalar perturbation obeying the Klein-Gordon equation,

 $\overline{|\Box \Psi(t,r,\theta,\phi)} = 0$

for the Static Spherical Symmetric (with R = r)

$$f \Psi_{,rr} + \left(f_{,r} + \frac{2f}{r}\right)\Psi_{,r} - \frac{\Psi_{,tt}}{f} + \frac{1}{r^2}\left\{\Psi_{,\theta\theta} + \cot\theta\Psi_{,\theta} + \frac{\Psi_{,\phi\phi}}{\sin^2\theta}\right\} = 0$$

By applying separation variables

$$\Psi(t,r,\theta,\phi) = e^{-i\,\omega t}\,\frac{\psi(r)}{r}\,Y_{I}^{m}(\theta,\phi)$$

Radial equation is

$$f \psi_{,rr} + f_{,r} \psi_{,r} - \left(\frac{l(l+1)}{r^2} - \frac{\omega^2}{f} + \frac{f_{,r}}{r}\right)\psi = 0$$

Since we are interested in perturbation around horizon, we assume

$$f = A(r - r_0) + O((r - r_0)^2)$$

In the end

$$\psi = (r - r_0)^{\frac{-l\omega}{A}} \left[\psi_0 r^{n_1} F_1\left(a_1, b_1; n_1; \frac{r}{r_0}\right) + \psi_1 r^{n_2} F_1\left(a_2, b_2; n_2; \frac{r}{r_0}\right) \right]$$

 ${}_{\odot}$ $(r-r_0)^{\frac{-I\,\omega}{A}}$ is the dominant term, so $\psi_{,r}\sim (r-r_0)^{-1}$

- diverging stress energy momentum tensor of the scalar field
- generic test scalar field energy momentum tensor blows up on the horizon

Conclusions

- Chase theorem applies for NE sources
- test scalar field EMT blows up generally on event horizon
- gravitating scalar fields with NE produce singular horizons
- explicit solution for square root Lagrangian mimicks global monopole with modified singularity

THANK YOU