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Survey characteristics : 
• Imaging galaxy survey.
• 5000 sq. deg. after 6 years 

(2013-2018)
• 570-Megapixel digital camera, 

DECam, mounted on the 
Blanco 4-meter telescope at 
Cerro Tololo Inter-American 
Observatory (Chile). 

• Five filters are used (grizY) 
with a nominal limiting 
magnitude iAB≃24 and with 10 
passes with a typical exposure 
time of 90 sec for griz and 45 
sec for Y

The Dark Energy Survey
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Paper Title Tracer (LSS) CMB map estimator detection level/science

Giannantonio et al 2016
CMB lensing tomography
with the DES Science Verification galaxies

Benchmark sample SV
Crocce et al 2016

SPT convergence
Planck convergence

!g 6�

Baxter et al 2016
Joint Measurement of Lensing-Galaxy Correlations Using
SPT and DES SV Data

Benchmark sample SV
Crocce et al 2016

SPT convergence !g + !�tg combined analysis cosmological
parameter estimation

Kovács et al 2016
Imprint of DES super-structures on the Cosmic Microwave
Background

Voids identified in DESY1
redMaGic galaxies

Planck (SMICA)
CMB temperature map
+Jubilee simulation

stacking
2� tension
with ⇤CDM simulations

Baxter et al 2018
A Measurement of CMB Cluster Lensing with SPT and
DES Year 1 Data

redMaPPer cluster
catalog from DESY1

convergence SPT
reconstructed

stacking

8.1� detection
constrain the amplitude of the relation
between cluster mass and
optical richness to roughly
17% precision

Omori et al 2018 (a)
Dark Energy Survey Year 1 Results: tomographic
cross-correlations between DES galaxies and
CMB lensing from SPT+Planck

redMaGiC sample DESY1 SPT + Planck lensing !g combined analysis cosmological
parameter estimation

Omori et al 2018 (b)
Dark Energy Survey Year 1 Results:
Cross-correlation between DES Y1 galaxy weak lensing and
SPT+Planck CMB weak lensing

shear catalog from DESY1 SPT + Planck lensing !�tg combined analysis cosmological
parameter estimation

Baxter et al 2019

Dark Energy Survey Year 1 Results:
Methodology and Projections
for Joint Analysis of Galaxy
Clustering, Galaxy Lensing,
and CMB Lensing Two-point Functions

redMaGiC sampleDESY1
+shear catalog from DESY1

SPT + Planck lensing !g + !�tg
METHODOLOGY PAPER:
combined analysis cosmological
parameter estimation

DES & SPT Collaborations 2018

Dark Energy Survey Year 1 Results:
Joint Analysis of Galaxy Clustering,
Galaxy Lensing, and
CMB Lensing Two-point Functions

redMaGiC sampleDESY1+
shear catalog from DESY1

SPT + Planck lensing !g + !�tg
combined analysis
cosmological parameter
estimation

Kovács et al 2019
More out of less: an excess integrated Sachs-Wolfe signal
from supervoids mapped out by the Dark Energy Survey

Voids identified
in DESY3 redMaGic galaxies

Planck (SMICA)
CMB temperature map
+Jubilee simulation

stacking
2.6� tension
with ⇤CDM simulations

Vielzeuf et al (coming soon)
Dark Energy Survey Year 1 Results:
the lensing imprint of cosmic
voids on the Cosmic Microwave Background

Voids identified
in DESY1 redMaGic galaxies

Planck convergence stacking
3� detection for various
analysis choices

DESxCMB

 + Prat et al 2019 : shear ratio SPT+ Planck -> cosmological parameter
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Cai et al. 2017

6 Cai et al.

Figure 3. Left: Stacked Planck lensing κ maps using all voids with rv > 20h−1Mpc: ‘up’ is the direction of Galactic north. Right: 1D κ profile for the left
panel. Errors about the mean are plotted on the right panel, and the dashed line shows the predictions of our mocks. The CMB κmaps are rescaled by the void
radius rv before stacking. The inner and outer circles have the radii of rv/

√
2 and rv respectively. They represent the optimal filter radius we found from the

HOD mock.

3.1 The optimal radius of the filter

Corresponding to each void centre, the CMB signal is taken to
be the averaged temperature T (or κ) within a circular aperture
r < Rfilter minus the same quantities averaged over an annular
aperture Rfilter < r <

√
2Rfilter, where Rfilter is the size of the

compensated top-hat filter. We will call the filtered temperature and
lensing convergence ∆T and ∆κ, i.e.

∆T =

∫ Rfilter

0
T (r)dr

∫ Rfilter

0
dr

−

∫

√
2Rfilter

Rfilter
T (r)dr

∫

√
2Rfilter

Rfilter
dr

∆κ =

∫ Rfilter

0
κ(r)dr

∫ Rfilter

0
dr

−

∫

√
2Rfilter

Rfilter
κ(r)dr

∫

√
2Rfilter

Rfilter
dr

(4)

To maximise the ISW signal, Cai et al. (2014) showed that the op-
timal choice was Rfilter = 0.6rv, using mock void catalogues de-
fined via haloes fromN -body simulations. Using our HOD mocks,
we re-investigate this scale factor for a possible dependence on void
radius. We find that Rfilter = 0.7rv gives slightly higher ampli-
tudes for the stacked filtered T signal as well as for the lensing κ
signal for voids with 100 < rv < 150 h−1Mpc. The correspond-
ing outer radius of the filter is rv. For simplicity, we will use this
size of the filter throughout out analysis, even though it may not be
the optimal choice for all ranges of voids.

3.2 Stacking with all voids

We now look at the results of stacking the CMB sky at the DR12
void locations. Because the predicted signal varies with void radius,
as does the fidelity of the void catalogue, we divided the results
into different bins of void radius. We sorted the voids in decreas-
ing order of radius, and measured the average filtered∆T and ∆κ
imprints for several logarithmically-spaced bins of rv.

The results are shown in the top row of Fig. 2. The filtered tem-
perature∆T is negative at large void radii. The deepest temperature
dip is approximately −6µK between rv ≃ 100 to 150 h−1Mpc,

with a significance of 2.4σ. ∆T crosses zero at rv ≃ 90h−1Mpc
and remains slightly positive at smaller void radii. We can under-
stand the presence of positive filtered temperature as an indication
of voids-in-clouds, i.e. voids living in over-dense environments.
The gravitational potential at the scale of the void for a void-in-
cloud is negative; i.e., it is a potential well rather than a potential hill
as intuitively expected for a void. The dominant linear ISW effect
thus yields a positive temperature perturbation (Cai et al. 2014).
We also find that the simulated ISW signal crosses zero, though
at a similar void radius of ≈ 30h−1Mpc. This indicates that the
stacked signal for the CMB temperature qualitatively resembles an
ISW signal in a ΛCDM universe.

For the largest voids, the observed ∆T shows consistency
with zero at rv >

∼
150 h−1Mpc, which confirms our speculation

from simulations that these objects may not be truly underdense at
their volume centroids. This could happen because the few largest
voids can be highly irregular in shape, composed of a few density
depressions linked together. Interestingly, the shape of the observed
∆T appears similar in shape to the simulation results, although the
simulated ∆T needs to be scaled up in order to match the data
shown in Fig. 2 (We discuss this point below).

When we look at the same results with the CMB lensing κ
map, as shown in the top-right panel of Fig. 2, the ∆κ signal has
a different character from that of ∆T . The κ measurements are
noisy at the radii where∆T peaks; but within the errors they follow
closely the curve from our simulations, and the amplitude of the
signal increases with decreasing void radius. The minimum of ∆κ
has a significance of ≈ 3σ at rv ≈ 30h−1Mpc.

Fig. 3 shows the stacked κ map (left) and its profile (right)
from the entire void sample. An underdensity of κ surrounded by
a ring of over-density is clearly seen. The mean value of κ is of
order−10−3 near the centre, and crosses zero at≈ 0.6rv , which is
very close to the optimal filter radius found from our simulation for
the ISW signal. At even larger radii, the over-dense ridge is centred
very closely at rv and then it drops to the background at ≈ 1.4rv .
Overall, the profile resembles that of a void-in-cloud. This is ex-
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It is clear from Fig. 1 that the cubic galileon model,
having no free parameters after imposition of the tracker
ansatz, gives rise to significant deviations from the GR
tangential shear signal. There is a factor of ⇠ 2 boost in
the lensing signal compared to the GR predictions, at all
radii.

As described in the introduction, modified gravity the-
ories can alter the lensing signal via two channels: i) by
contributing to the the effective energy density on the
RHS of the Poisson equation, and ii) by creating effec-
tive anisotropic stress such that � 6=  . Using eq.(21)
and the expressions in the appendix, one can see that the
cubic galileon does not generate any effective anisotropic
stress. Consequently, all the deviations between the GR
and cubic galileon curve in Fig. 1 must arise from the
effective energy density of the galileon field.

Initially it may seem surprising that the galileon field
can have such a substantial effect on the lensing profile,
whilst its effects on the matter distribution within the
void are much smaller (see §III A). The reason underlying
this is the relative evolutionary timescales of the matter
distribution and the scalar field profile. Since the galileon
field is designed to drive cosmic acceleration (at least in
the model considered here), it only becomes a significant
fraction of the energy budget of the universe for z < 1
(see [80] for the evolution of spherical perturbations in
a comparable gravity model). The void density profile
has largely been determined before these redshifts are
reached.

The quartic galileon is an example of a theory which
can modify lensing via both of the channels above. Inter-
estingly, the quartic curve in Fig. 1 remains much closer
to the GR prediction. This is due to the effect of the
constraints in eqs.(10-13), which fix the value of c3 used
to be much smaller and of opposite sign to that in the
cubic model. Quantitatively, using ⇠ = 2.1 in both mod-
els gives c3 ' 0.08 in the cubic, but c3 ' �0.001 in the
quartic galileon. This explains why a single value of ⇠
results in significant enhancements in the lensing ampli-
tude for one model and a small suppression (relative to
GR) in the other. However, Fig. 2 shows that the tangen-
tial shear profile of the quartic galileon is quite sensitive
to small variations away from ⇠ = 2.1.

Note from Figs. 1 and 2 that, despite significant vari-
ation around the void radius and at a few radii out
(r/RV ⇠ 2 � 3), the null of the tangential shear re-
mains fixed at r ⇠ 1.5Rv in all cases. The reason for
this is as follows: the void density profile determines
the radius at which the void is exactly compensated, i.e.
�M(< r) ! 0. In §III B we selected the physical branch
of solutions such that �,�/� ! 0 at the same radius.
Since the void density profile used is the same for all
gravity models (see discussion in §IIIA), the potential
derivatives (eqs. 20 and 21) vanish at the same radius for
all gravity models. Via eq.(25), this then ensures that
the null of �⌃ is unchanged by variations of the gravity
model. This property should hold true for any model of
gravity that does not appreciably impact the void density

FIG. 1: Upper panel: the void density profile of eq.(17),
shown here with a central depth �v = �0.5 and the fiducial
parameters of eq.(18). Lower panel: corresponding tangen-
tial shear profiles in GR, the cubic galileon and the quartic
galileon gravity theories. Recall (from §II C) that after apply-
ing the tracker ansatz the cubic galileon has no free parame-
ters, whilst the quartic galileon has one; we take this here to
be ⇠ = 2.1. This figure is shown at z = 0.

profile.

B. Void Profiles

In §III A we introduced two void density profiles: a
simple cubic fit, and a compensated ridge profile. For
ease of comparison, most of the figures in this paper em-
ploy the latter profile. In Fig. 3 we show the correspond-
ing density and tangential shear profile for the cubic fit,
together with data obtained from voids identified by [4]
in the SDSS DR7-Full LRG catalog of [81]. As reported
in [4], a void of central depth �v ' �0.5 provides a good
fit to the data in GR.

In the lower panel we further show a corresponding set
of tangential shear profiles in the cubic galileon model.
It is clear that the cubic galileon produces a higher am-
plitude lensing signal than in GR (this can be seen, for
example, by comparing the two curves with �v = �0.5),
and that this enhancement persists out to distances well
beyond the void radius.

We will use the void lensing data and covariance (as per
the methods of [4]) to obtain the posterior probability of
�v for the cubic galileon. It is easy to see by eye from Fig.
3 that a cubic galileon model with �v ⇠ �0.4 provides a
good fit to the SDSS data points (compared to �v ⇠ �0.5
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Figure 8. The yellow (solid) line shows the average CMB lensing
convergence profile (✓) for all voids with 40 h�1Mpc < Rv <
60 h�1Mpc in the CMASS mock catalogue. Angular units are
scaled in terms of the average angular size of these voids, assuming
they are centred at redshift z = 0.52. The blue (dashed) and
red (dot-dashed) lines show (✓) for two subsets of this sample,
with �v < �20 and �v > 20 respectively but with the same
average void size. For typical numbers of voids in survey data,
statistical uncertainties in these predictions will be much smaller
than observational errors, so are omitted here.

size Rv. However, as the lensing potential is sourced by the
gravitational potential �, and the void parameter �v is a
useful proxy for �, it follows that �v should also provide a
useful discriminant between populations of voids that have
the same size Rv yet produce very di↵erent lensing e↵ects.
To illustrate this, we used the stacked average DM density
profile �(r) for voids, determined as in Section 3.5, to calcu-
late the CMB lensing convergence signal,

(✓) =
3⌦

m

H2

0

2c2

Z
� (�s � �)

�s

�(✓,�)
a

d�, (15)

where � is the comoving radial coordinate and �s is the
comoving distance to the last scattering surface. Figure 8
shows the resultant average (✓) signal for all voids in the
CMASS mock void catalogue in the size range 40 h�1Mpc <
Rv < 60 h�1Mpc as the yellow solid line. Also shown are
the (✓) profiles for two additional subsets of voids, which
both satisfy exactly the same size cuts, but have �v < �20
(blue dashed) and �v > 20 (red dot-dashed) respectively.

It is clear that voids of very similar size Rv but di↵er-
ent mean galaxy density �g and thus �v can produce very
di↵erent lensing convergence signals. Equally, as the appar-
ent size Rv is only loosely related to the true extent of the
void DM underdensity (Section 3.5), voids with very di↵er-
ent Rv could contribute similar convergence profiles (✓). In
addition, Figure 8 shows that averaging together the contri-
butions from voids with di↵erent values of �v will in general
produce an average convergence that is closer to zero and
thus potentially harder to measure. This suggests that the
sensitivity of detection of void lensing e↵ects could be signifi-
cantly improved by consideration of sub-populations defined
by the variable �v.

Although we have only discussed the convergence  in

the example above, the same argument can equally be ap-
plied to the contribution of voids to the lensing shear �. We
leave further exploration of these e↵ects and applications to
data to future work.

4.3 Voids in redshift space

Voids in galaxy surveys are observed in redshift space. Under
the assumption of an isotropic Universe the stacked galaxy
distribution around void centres should average to spherical
symmetry in real space, but will in general appear distorted
due to the Alcock-Paczynski (AP) e↵ect (Alcock & Paczyn-
ski 1979). This has been proposed as a potentially power-
ful test of cosmology (Lavaux & Wandelt 2012), which has
recently been applied to galaxy survey data (Sutter et al.
2012a; Sutter et al. 2014; Mao et al. 2016; Hamaus et al.
2016).

The use of voids for the AP test is complicated by
redshift-space distortions due to peculiar velocities. Naively,
one would expect velocity outflows around voids, leading to
a stretching of their shapes along the line of sight when seen
in redshift space. However, several authors (Lavaux & Wan-
delt 2012; Sutter et al. 2014; Mao et al. 2016) have found
the opposite: seen in redshift space, voids identified using
watershed void-finders such as ZOBOV instead appear to be
squashed along the line of sight. This phenomenon has been
noted both in simulations and for voids in real galaxy data.
Mao et al. (2016) describe it as a failure of linear theory and
show that it degrades the sensitivity of the AP test. How-
ever, Cai et al. (2016) argue that a squashing e↵ect can be
consistent with linear theory.

Our results provide another perspective: voids reside
in a variety of di↵erent large-scale environments, so not all
voids are associated with velocity outflows. As noted in Sec-
tion 3.1, a significant fraction of voids that are identified by
the watershed algorithm correspond to local density min-
ima within regions that are overcompensated on large scales
and thus form potential wells rather than maxima. In linear
theory, such regions will not correspond to velocity outflows
(at least on scales of observational interest). Another way
to illustrate the same problem is to note that a dynamical
method of classification of the cosmic web based on eigen-
values of the tidal tensor T↵� = @↵@�� (Hahn et al. 2007)
shows that only a small fraction of the volume of the Uni-
verse should lie in regions that are simultaneously expand-
ing along all three directions, whereas watershed void-finders
such as ZOBOV are by nature space-filling. Only a fraction
of ZOBOV voids can correspond to local maxima of � and
thus to truly expanding regions.

In addition, on the basis of our results we can make
a few qualitative predictions. Firstly, the minority of voids
with large negative values of �v should correspond to strong
velocity outflows. Secondly, the magnitude of the velocity
outflow and thus the details of the induced redshift-space
distortion should vary with the values of �v, as should the
length scale over which the e↵ect is observable. Thirdly, as
discussed in Appendix A, the void centre Xv used in this
work traces maxima of � better than the void barycentre
Xb used in many previous analyses, and therefore a shift
from use of Xb to Xv in void catalogues will enhance the
velocity outflow seen. Detailed exploration of these topics

c� 0000 RAS, MNRAS 000, 1–14

Nadathur et al. 2017

Kovács et al. 2019

Baker et al. 2018
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FIG. 1. Galaxy distribution of the redMaGiC Y1 sample used in this analysis. The fluctuations represent the raw counts,
without any of the corrections derived in this analysis. We have restricted the analysis to the contiguous region shown in the
figure. The area is 1321 square degrees.

FIG. 2. Redshift distribution of the combined redMaGiC
sample in 5 redshift bins. They are calculated by stacking
Gaussian PDFs with mean equal to the redMaGiC redshift
prediction and standard deviation equal to the redMaGiC
redshift error. Each curve is normalized so that the area of
each curve matches the number of galaxies in its redshift bin.

The redMaGiC algorithm produces a redshift predic-
tion zRM and an uncertainty �

z

which is assumed to be
Gaussian. This sample was chosen instead of other DES
photometric samples because of its small redshift uncer-
tainty, which is obtained at the expense of number den-
sity.

The redMaGiC algorithm makes use of an empiri-

cal red-sequence template generated by the training of
the redMaPPer cluster finder [34, 35]. As described in
[35], training of the red-sequence template requires over-
lapping spectroscopic redshifts, which in this work were
obtained from SDSS in the Stripe 82 region [36] and the
OzDES spectroscopic survey in the DES deep supernova
fields [37].

For the redMaGiC samples in this work, we make
use of two separate versions of the red-sequence training.
The first is based on SExtractor MAG AUTO quantities from
the Y1 coadd catalogs, as applied to redMaPPer in
[38]. The second is based on a simultaneous multi-epoch,
multi-band, and multi-object fit (MOF) (see Section 6.3
of Y1GOLD), as applied to redMaPPer [39]. In gen-
eral, due to the careful handling of the point-spread func-
tion (PSF) and matched multi-band photometry, the MOF
photometry yields lower color scatter and, hence, smaller
scatter in red-sequence photo-zs. For each version of the
catalog, photometric redshifts and uncertainties are pri-
marily derived from the fit to the red-sequence template.
In addition, an afterburner step is applied (as described
in Section 3.4 of [13]) to ensure that redMaGiC photo-
zs and errors are consistent with those derived from the
associated redMaPPer cluster catalog [13].

As described in [13], the redMaGiC algorithm com-
putes color-cuts necessary to produce a luminosity-
thresholded sample of constant co-moving density. Both
the luminosity threshold and desired density are inde-
pendently configurable, but in practice higher luminos-
ity thresholds require a lower density for good perfor-
mance. We note that in [13] the co-moving density was
computed with the central redshift of each galaxy (zRM).

MNRAS 000, 000–000 (0000) Preprint 4 November 2019 Compiled using MNRAS LATEX style file v3.0

Dark Energy Survey Year 1 Results: the lensing imprint of cosmic
voids on the Cosmic Microwave Background

P. Vielzeuf1,2,3? A. Kovács1,4,5†, U. Demirbozan1, P. Fosalba6,7, E. Baxter8, N. Hamaus9,
D. Huterer10, R. Miquel11,1, S. Nadathur12, G. Pollina9, C. Sánchez8, L. Whiteway13,
T. M. C. Abbott14, S. Allam15, J. Annis15, S. Avila16, D. Brooks13, D. L. Burke17,18,
A. Carnero Rosell19,20, M. Carrasco Kind21,22, J. Carretero1, R. Cawthon23,
M. Costanzi24,25, L. N. da Costa20,26, J. De Vicente19, S. Desai27, H. T. Diehl15,
P. Doel13, T. F. Eifler28,29, S. Everett30, B. Flaugher15, J. Frieman15,31, J. García-Bellido16,
E. Gaztanaga6,7, D. W. Gerdes32,10, D. Gruen33,17,18, R. A. Gruendl21,22, J. Gschwend20,26,
G. Gutierrez15, W. G. Hartley13,34, D. L. Hollowood30, K. Honscheid35,36, D. J. James37,
K. Kuehn38,39, N. Kuropatkin15, O. Lahav13, M. Lima40,20, M. A. G. Maia20,26,
M. March8, J. L. Marshall41, P. Melchior42, F. Menanteau21,22, A. Palmese15,31, F. Paz-
Chinchón21,22, A. A. Plazas42, E. Sanchez19, V. Scarpine15, S. Serrano6,7, I. Sevilla-
Noarbe19, M. Smith43, E. Suchyta44, G. Tarle10, D. Thomas12, J. Weller45,46,9, J. Zuntz47

(T�� DES C������������)
Author a�liations are listed at the end of this paper

4 November 2019

ABSTRACT
Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, result-
ing in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map
from the MICE N-body simulation to calibrate our detection strategy for a given void defini-
tion and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the
Planck 2015 lensing convergence map on their locations, probing the consistency of simulated
and observed void lensing signals. When fixing the shape of the stacked convergence profile
to that calibrated from simulations, we find imprints at the 3� significance level for various
analysis choices. The best measurement strategies based on the MICE calibration process
yield S/N ⇡ 4 for DES Y1, and the best-fit amplitude recovered from the data is consistent
with expectations from MICE (A ⇡ 1). Given these results as well as the agreement between
them and N-body simulations, we conclude that the previously reported excess integrated
Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the
Planck CMB lensing map.

Key words: cosmic microwave background, gravitational lensing

1 INTRODUCTION

The standard model of cosmology is based on the assumption that
our universe is homogeneous and isotropic at large scales. However,
going to smaller scales one can observe a hierarchical clustering of
matter that forms di�erent structures in the cosmic web.

Surrounded by galaxies, galaxy clusters, filaments and walls,

? Corresponding author: pvielzeu@sissa.it
† Corresponding author: akovacs@iac.es

cosmic voids are large underdense regions that occupy the majority
of space in our Universe. They are the most dark energy dominated
regions in the cosmic web, essentially devoid of dark matter and re-
lated non-linear e�ects. Their underdense nature thus makes them
good candidates for studying the dark energy phenomenon (Ryden
1995; Lee & Park 2009; Bos et al. 2012; Pisani et al. 2015; Sutter
et al. 2015) and to probe its alternatives (Zivick et al. 2015; Cai et al.
2015; Li et al. 2012; Clampitt et al. 2013; Verza et al. 2019). Modi-
fied gravity models attempt to explain cosmic acceleration without
the use of a cosmological constant, however the viability of these

© 0000 The Authors
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redMaGiC algorithm is designed to select galaxies with high quality photometric 
redshift estimates 
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FIG. 1. (Top panel): Redshift distributions of redMaGiC
lens galaxies divided in tomographic bins (colors) and for
the combination of all of them (black). The n(z)’s are ob-
tained stacking individual Gaussian distributions for each
galaxy. (Bottom panel): The same, but for our two weak
lensing source samples, Metacalibration and im3shape,
using the BPZ photometric redshift code.

Since the redshift distributions of our lens and source
samples, nl(z), ns(z) respectively, have a non-negligible
width and even overlap, we take this into account by
defining an effective ⌃�1

crit

integrating over the corre-
sponding redshift distributions. For a given lens bin
i and source bin j, this has the following form:

⌃�1 i,j
crit,e↵ =

Z Z
dzldzs ni

l(zl) nj
s(zs) ⌃�1

crit

(zl, zs). (5)

We need to assume a certain cosmology (flat ⇤CDM
with ⌦m = 0.3) when calculating the angular diameter
distances in ⌃�1

crit

. The results presented in this analysis
depend only weakly on this choice of cosmology, as we
will further discuss in the relevant sections (see Sec. VI).

III. DATA AND SIMULATIONS

The Dark Energy Survey is a photometric survey that
will cover about one quarter of the southern sky (5000
sq. deg.) to a depth of r > 24, imaging about 300
million galaxies in 5 broadband filters (grizY ) up to
redshift z = 1.4 [39, 40]. In this work we use data from
a large contiguous region of 1321 sq. deg. of DES Year 1
observations which overlaps with the South Pole Tele-
scope footprint �60 deg. < � < �40 deg. and reaches a
limiting magnitude of ⇡ 23 in the r-band (with a mean
of 3 exposures out of the planned 10 for the full survey).
Y1 images were taken between 31 Aug 2013 and 9 Feb
2014.

A. Lens sample: redMaGiC

The lens galaxy sample used in this work is a subset
of the DES Y1 Gold Catalog [41] selected by redMaGiC
[31], which is an algorithm designed to define a sample
of luminous red galaxies (LRGs) with minimal photo-z
uncertainties. It selects galaxies above some luminosity
threshold based on how well they fit a red sequence tem-
plate, calibrated using redMaPPer [32, 33] and a sub-
set of galaxies with spectroscopically verified redshifts.
The cutoff in the goodness of fit to the red sequence
is imposed as a function of redshift and adjusted such
that a constant comoving number density of galaxies is
maintained. The redMaGiC photo-z’s show excellent
performance, with a scatter of �z/(1+ z) = 0.0166 [37].
Furthermore, their errors are very well characterized
and approximately Gaussian, enabling the redshift dis-
tribution of a sample, n(z), to be obtained by stacking
each galaxy’s Gaussian redshift probability distribution
function (see [31] for more details).

The sample used in this work is a combination of
three redMaGiC galaxy samples, each of them defined
to be complete down to a given luminosity thresh-
old L

min

. We split the lens sample into five equally-
spaced tomographic redshift bins between z = 0.15 and
z = 0.9, with the three lower redshift bins using the
lowest luminosity threshold of L

min

= 0.5L? (named
High Density sample) and the two highest redshift bins
using higher luminosity thresholds of L

min

= 1.0L? and
L

min

= 1.5L? (named High Luminosity and Higher
Luminosity samples, respectively). Using the stack-
ing procedure mentioned above, redshift distributions
are obtained and shown in Fig. 1. Furthermore, red-
MaGiC samples have been produced with two different
photometric reduction techniques, MAG_AUTO and Multi-
object fitting photometry (MOF), both described in [41].
We follow the analysis of [37] and we use MAG_AUTO pho-
tometry for the three lower redshift bins and MOF pho-
tometry for the rest, as it was found in [37] that this
combination was optimal in minimizing systematic ef-
fects that introduce spurious angular galaxy clustering.

B. Source samples: Metacalibration and
im3shape

Metacalibration [42, 43] is a recently developed
method to accurately measure weak lensing shear using
only the available imaging data, without need for prior
information about galaxy properties or calibration from
simulations. The method involves distorting the image
with a small known shear, and calculating the response
of a shear estimator to that applied shear. This new
technique can be applied to any shear estimation code
provided it fulfills certain requirements. For this work,
it has been applied to the ngmix shear pipeline [44],
which fits a Gaussian model simultaneously in the riz
bands to measure the ellipticities of the galaxies. The
details of this implementation can be found in [45]. We
will refer to the ngmix shear catalog calibrated using
that procedure as Metacalibration.

im3shape is based on the algorithm by [46], modi-
fied according to [47] and [45]. It performs a maximum

6

FIG. 3. Correlations of volume-limited redMaGiC galaxy number density with seeing FWHM and exposure time before any
survey property (SP; see text for more details) cuts (illustrated with the red vertical lines) were applied to the mask. In the
absence of systematic correlations, the results obtained from these samples are expected to be consistent with no trend (the
reference green dashed line). The cuts removed regions with i-band FWHM > 4.5 pixels and i-band exposure time > 500s as
these showed correlations that di↵ered significantly from the mean (> 20%) or were not well fit by a monotonic function. No
SP weights were used in this figure.

z range L

min

/L⇤ n

gal

(arcmin�2) N

gal

Photometry
0.15 < z < 0.3 0.5 0.0134 63719 MAGAUTO
0.3 < z < 0.45 0.5 0.0344 163446 MAGAUTO
0.45 < z < 0.6 0.5 0.0511 240727 MAGAUTO
0.6 < z < 0.75 1.0 0.0303 143524 MOF
0.75 < z < 0.9 1.5 0.0089 42275 MOF

TABLE I. Details of the sample in each redshift bin. L
min

/L⇤
describes the minimum luminosity threshold of the sample,
n

gal

is the number of galaxies per square degree, and N

gal

is
the total number of galaxies.

z range b

i
fid

�z

i

0.15 < z < 0.3 1.45 Gauss (0.008, 0.007)
0.3 < z < 0.45 1.55 Gauss (�0.005, 0.007)
0.45 < z < 0.6 1.65 Gauss (0.006, 0.006)
0.6 < z < 0.75 1.8 Gauss (0.00, 0.010)
0.75 < z < 0.9 2.0 Gauss (0.00, 0.010)

TABLE II. Details of the fiducial parameters used for covari-
ance and parameter constraints. Here, bi

fid

is the fiducial lin-
ear galaxy bias for bin i applied to the Gaussian mock surveys
we use to construct the covariance matrices. The �z

i prior
is a Gaussian prior applied to the additive redshift bias un-
certainty. These were selected to match the analysis in (DES
Collaboration et al.; Y1COSMO).

For this work, the density was computed by sampling
from a Gaussian distribution zRM ± �

z

, which creates
a more stable distribution near filter transitions. This is
the only substantial change to the redMaGiC algorithm
since the publication of [13].

We use redMaGiC samples split into five redshift bins
of width �z = 0.15 from z = 0.15 to z = 0.9. We

define our footprint such that the data in each redshift
bin will be complete to its redshift limit across the entire
footprint. To make this possible, we define samples based
on a luminosity threshold. Reference luminosities are
computed as a function of L⇤, computed using a Bruzual
and Charlot [40] model for a single star-formation burst
at z = 3 [See Section 3.2 35]. Naturally, increasing the
luminosity threshold provides a higher redshift sample as
well as decreasing the comoving number density. Using a
di↵erent luminosity threshold in each redshift bin allows
us to maximize signal to noise while also providing a
complete sample in each redshift bin. The details of these
bins are given in Table I.

The 5 redshift bins were chosen so that the width of
the bins is significantly wider than the uncertainty on
individual galaxy redshifts, but smaller than the di↵er-
ence between the maximum redshifts of the luminosity
thresholds used.

In addition to the primary redMaGiC selection, we
also apply a cut on the luminosity L/L⇤ < 4 as this was
shown for DES Science Verification to reduce the stellar
contamination in the sample, although this is mostly su-
perfluous for Y1 Gold. During testing, we find that the
observational systematic relationships for the 0.5L⇤ sam-
ple, used for z < 0.6, are minimized for the MAG AUTO
sample, with a very minor impact on photo-z perfor-
mance. For L⇤ � 1.0, used for z > 0.6, we instead find
that the observation systematic relationships are mini-
mized for the MOF sample, and that the photo-z perfor-
mance is also improved. Consequently, we use MAG AUTO
for our z < 0.6 sample and MOF for z > 0.6. See Section V
for further discussion.

We build the area mask for the redMaGiC samples
based on the depth information produced with the red-

Tracing the density field with good photometry
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-0.678 1.11

Ri

Rj

δ(Ri)�0 ⇒ i++ 
δ(Rj) ≥ 0 ⇒ Rv = Rj

Figure 1. Graphical description of the void-finding algorithm
presented in this paper. The background gray-scaled field is the
smoothed galaxy field (� = 10 Mpc/h) in a redshift slice used by
the void-finder. The two solid (red) dots show two void centers. For
the upper void, we show a circular shell or radius Ri. Since the den-
sity contrast �(Ri

) < 0, the algorithm checks larger shells, up to
radius Rj such that �(Rj

) > 0. The void radius is then defined as
Rv = Rj .

of 0.1 deg. and a physical resolution of 1.5 Mpc/h at z = 0.3
(3 Mpc/h at z = 0.6).

(ii) We compute the mean density in the map corresponding
to the given redshift slice, n̄

2d, and convert the galaxy map
to a density contrast map as � = n

2d/n̄
2d � 1, where n

2d is
the galaxy map.

(iii) Then we smooth the density contrast map with a Gaus-
sian filter of comoving scale �s = 10 Mpc/h.

(iv) We take this smoothed contrast map and consider only the
most underdense pixels (with � < �m = �0.3) as potential
void centers. We define the most underdense pixel in the
map as the first void center.

(v) Next we start defining circular shells of increasing radius
around that center, stopping when the mean density within
the slice (� = 0) is reached. That is, starting with a shell
of radius R i

v , we measure the average galaxy density in the
shell �(R i

v ), and if the density is negative we check the next
larger shell �(R i+1

v ), where the increment between shells is
1 Mpc/h in radius. For some shell R j

v the density contrast
reaches zero, �(R j

v ) > 0, and at that point the void radius is
defined as Rv = R j

v (see Fig. 1 for a graphical explanation).
(vi) Then all pixels contained in this void are removed from

the list of potential void centers, preventing any of these
pixels to become the center of any other void. From the
remaining pixels that satisfy � < �m = �0.3, we define the
next most underdense pixel as the second void center. The
process is repeated until all pixels with � < �m = �0.3
have been assigned to a void.

Beyond the dependency on the line-of-sight size of the
projected slice in which the finder is executed, studied in more
detail later in this section, the void catalog produced by this
algorithm depends on two parameters: the smoothing scale,
�s, and the maximum density contrast of a pixel to become

a void center, �m. The smoothing scale (�s = 10 Mpc/h) is
chosen to be about half the radius of the smallest voids we
can access in our data sample (because of photo-z smearing),
and increasing it would erase the structure leading to some
of these smallest voids, leaving the large voids intact. On the
other hand, the most significant voids found by the algorithm,
the deepest ones, are independent of the choice �m = �0.3
since their void center pixel is more underdense than that. By
changing the value of �m we are only affecting the shallower
voids of the sample. The impact of the �m choice is studied in
Appendix A. Also, voids found by this algorithm can overlap or
even enclose one another, but just in the case where a subvoid
is deeper than the bigger void enclosing it.

The process detailed above will produce a list of voids for
a given redshift slice. Before describing how various slices are
combined to obtain the full void catalog, we first study the
performance of the single slice results in simulations.

3.2 Performance on simulations

In order to validate the performance of the algorithm we use
the simulations, where we have both spectroscopic and pho-
tometric redshift for void tracer galaxies, and we compare the
voids found by the algorithm in spec-z and photo-z space. In
particular, we run the void finding algorithm twice on each
redshift slice: first using spectroscopic redshifts for selecting
the galaxies that go into the slice and then using photometric
redshifts that mimic the ones we have in real DES data.

Once we have the spec-z and photo-z defined void cata-
logs, we measure the projected galaxy density profiles of the
voids in them in radial annuli using the true redshifts. Figure
2 shows the resulting density profiles for both cases in differ-
ent slice comoving thicknesses. As expected, the void finder
performs poorly if the size of the projected slice is smaller or
similar to the photo-z dispersion �z ' 50 Mpc/h. Therefore,
the accuracy of the finder is a function of the thickness of the
projected slice: for slice width ⇠ 2 times the size of the typical
photometric redshift scatter, the difference between the aver-
age density profiles of voids found in spec-z and photo-z is not
significant, being smaller than the standard deviation of the
stacked void profiles.

Figure 2 shows that voids found by the algorithm in photo-
z space can indeed have very similar density profiles as voids
found in spec-z space. However, it is also important to know
the relative number of voids found in the two cases. Photomet-
ric redshifts produce a smearing in the line-of-sight position of
tracers that can actually erase some of the structure, espe-
cially on scales comparable to the size of the photo-z scatter
or smaller. That will have the consequence of some small voids
not being detected in the photo-z case. The voids of size larger
than the photo-z scatter should be detected in both cases. Fig-
ure 3 shows the distribution of void radii in simulations for
spec-z and photo-z samples. As expected, we find less voids in
the photo-z case, with the difference being more important for
small voids and becoming negligible for the voids substantially
larger than the photo-z dispersion (�z ' 50 Mpc/h).

In addition to the comparison of the galaxy density pro-
files of voids, which is the most important test of the algo-
rithm, Fig. 4 shows a visual comparison between the positions
and radius of spec-z and photo-z defined voids in a random
100 Mpc/h-thick slice of our simulations. The correlation be-
tween the two sets of voids is very clear, in both positions and
radii. In some cases, especially for the biggest voids, the match

c� 0000 RAS, MNRAS 000, 1–15

• Divide the sample in redshift slices. 100Mpc/h 
slices are shown to be a good  
compromise considering redMaGiC redshift 
accuracy.  

• Compute the density field for each slice by 
counting the galaxy number in each  
pixel and smoothing the field with a Gaussian 
with a predefined smoothing scale.  

• Select the most underdense pixel and grow 
around it the void until it reaches the mean 
density.  

• Save the void, erase it from the density map 
and iterate the process with the following 
underdense pixel.  

Sánchez et al. (DES Collaboration), MNRAS 465, 746, 
2017.
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• RedMagiC High-density 
sample

Two smoothing scales:
10 Mpc/h
20 Mpc/h

4 void catalogs

smoothing scale
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10Mpc/h

+ 2VIDES catalogs as cross-check
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Figure 1. Comparison of the 2D void catalogue characteristics constructed in simulated MICE1 and MICE2 (orange bars and blue steps) and observed DES
Y1 samples (blue bars) with the di�erent void catalogue versions (HD10, HD20, HL10, HL20). We present results for the high-density sample (first and second
columns) and the high-luminosity sample (third and fourth columns) for di�erent void finder smoothing scales of 10 Mpc/h and 20 Mpc/h.

each void is assigned an e�ective radius re�
v that is equal to the

radius of a sphere with a volume identical to the total void volume.
Then centers of 3D VIDE voids are defined as volume-weighted
barycenters of all the Voronoi cells that make up the given void.

We note that the possible elongation properties of ZOBOV/VIDE
voids identified in photo-z samples have also been investigated by
Granett et al. (2015) using overlapping tracer with accurate spec-
troscopic redshift information as ground truth. Then Fang et al.
(2019) reconstructed the average shape of the DES Y1 and MICE
VIDE voids we also use in this study and reported a significant line-
of-sight elongation (with an axis ratio of about 4) due to photo-z
errors. They concluded, however, that individual voids are not nec-
essarily more elongated but a selection bias in orientation aligned
with our line-of-sights breaks the isotropy. Relatedly, Cautun et al.
(2018) argued that tunnel-like structures provide better signal-to-
noise compared to spherical voids of the same angular size, and
therefore this property of our VIDE voids is not a disadvantage.

3.3 Cosmic void properties in the MICE galaxy mocks

We note that the definition of e�ective radius of 3D VIDE voids (re�
v )

is di�erent than the radius definition of 2D voids (rv) as we describe
above. In particular, the void radius of VIDE structures is defined
as a turning point in the density profile’s compensation around the
voids, while the 2D void radius is simply a distance where the pro-
files reach the mean density. Similarly, the underdensity parameters
are defined di�erently in the two void finders. Nevertheless the cat-
alogues are internally consistent and their CMB lensing signals can
meaningfully be compared to each other. We apply specific pruning
methods to make 2D and VIDE void catalogues more comparable,
especially in number counts, and we provide a detailed description
of these cuts in Section 4.

3.3.1 2D voids

We examine how potential systematic e�ects modify the resulting
void populations. We compare the void parameter distributions for

MNRAS 000, 000–000 (0000)
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di�erent tracer densities and various initial Gaussian smoothing
applied to the density fields. Edge/mask e�ects may lead to di�erent
mean void properties because at survey boundaries the full extent of
underdense regions around minima may not be captured with good
precision.

We run our 2D void finder using two di�erent redMaGiC
samples as tracers. The redMaGiC high-luminosity sample applies a
stronger cut in luminosity (L > 1.5L⇤) which o�ers higher precision
in photometric redshift. On the other hand, the redMaGiC high-
density sample has a more relaxed luminosity cut (L > 0.5L⇤),
resulting in an increased galaxy density. We then further probe
systematic e�ects by running the void finder on these two rather
di�erent samples using two di�erent initial Gaussian smoothing
scales, namely 10 Mpc/h and 20 Mpc/h.

We compare the void catalogues in terms of three characteristic
parameters of voids: distribution in physical size (rv), distribution
of mean density (�̄) and distribution in central void density (�1/4).
We observe the following properties:

• Comparing the di�erent resulting catalogues, a higher number
of voids is detected when the tracer density is lower (redMaGiC
high-luminosity sample). Sutter et al. (2014a) found a di�erent
behavior for VIDE voids in simulations. Shot noise appears to drive
these e�ects. In particular, a higher number of pixels are identified
as 2D void center candidates when the tracer density is lower, and
the mean density might be reached more frequently, splitting voids
up.

• A larger smoothing scale decreases the total number of voids
for both tracer densities , as the role of shot noise is reduced.

• The mean void radius is shifted towards larger values for larger
smoothings, as smaller voids merge into larger encompassing voids.

• Small smoothing scales result in a larger fraction of deep voids,
given the same tracer density. This feature is also related to shot
noise properties.

When testing mask e�ects, we found that the voids identified
using redMaGiC tracers in the MICE octant have di�erent prop-
erties compared to void properties of DES Y1-like survey patches
inside the octant. We therefore decided to use the same mask as in
the DES Y1 cosmological analysis (Elvin-Poole et al. 2018) as this
guarantees faithful comparison to the observed data. We consider
two rotated positions of the Y1 mask with some overlap that is un-
avoidable inside the octant. Therefore, as a consistency test, we will
study two MICE Y1-like void catalogues (MICE 1 and MICE 2; see
Table 1 for more details).

3.3.2 VIDE voids

Aiming at a di�erent catalogue of voids from the same data set,
we also run the VIDE void finder on the MICE redMaGiC photo-z
catalogue in the full octant, focusing on the high density sample of
galaxies.

We find a total of 36115 voids using this 3-dimensional algo-
rithm. The VIDE algorithm provides various output parameters to
characterize the voids. We judge that the most important parameters
for our CMB lensing study are the e�ective radius (re�

v ), density
contrast (r), and the TreeLevel (for details see e.g. Neyrinck 2008;
Sutter et al. 2015).

Unlike for 2D voids, we find no significant di�erence in VIDE
void properties when using Y1-like mask patches or a full octant
mask in MICE. This agrees with the findings of Pollina et al. (2019).
We therefore consider all voids in the MICE octant for our stacking

High luminosity (HL)

Smoothing DES Y1 MICE 1 MICE 2

10 Mpc/h 1218 1158 1219
20 Mpc/h 411 364 400

High density (HD)

Smoothing DES Y1 MICE 1 MICE 2

10 Mpc/h 518 521 495
20 Mpc/h 122 85 106

VIDE DES Y1 MICE

All 7383 36115
Pruned 239 1687

Table 1. We list the numbers of 2D voids identified in two Y1-like MICE
patches vs. in DES Y1 data. We also provide void number counts for VIDE
voids for the full MICE octant and for the DES Y1 data set, with and without
pruning cuts that we consider in our measurements.

tests , i.e. a factor of ⇠ 5 more voids than in a Y1 patch (see also
Table 1 for void number count comparisons).

In our empirical tests, we found that a re�
v > 35 Mpc/h limit in

radius e�ectively removes small voids that tend to live in overdense
environments. The positive central  imprint of these small voids
decreases the negative stacked  signal inside the void radius, bring-
ing the signal closer to zero thus harder to detect. We also found
that an additional cut that removes the least significant voids below
the 1� extremeness level (r > 1.22) (Neyrinck 2008) is helpful to
eliminate voids with less negative central imprints and remaining
larger voids with positive central imprints. While these choices are
subject to further optimization, we use them in the present analysis
in order to test a di�erent definition using a robust and clean VIDE
sub-sample.

Finally, we apply a cut with TreeLevel = 0 to only keep voids
which are highest in the hierarchy, i.e. do not overlap with sub-
voids. These three conditions result in a set of voids that is a very
conservative subset of the full catalogue. However, such a pruned
catalogue with clean expected CMB  imprints is su�cient for
providing an alternative for our main analysis with 2D voids.

3.4 DES Y1 catalogues compared to simulations

In the light of the simulated stacking measurements using the MICE
 map, we aim to measure the DES Y1 voids ⇥ Planck CMB 
signal. We thus use the observed redMaGiC catalogues from DES
Y1, presented in 3.3, to construct void catalogues with the di�erent
tracer densities and initial smoothing scales.

Figure 1 shows a comparison of the observed and simulated
2D void catalogues. We report a very good agreement in terms
of sizes, central density, and mean density for both MICE Y1-
like patches when they are compared to DES Y1 data. We find
that the simple two-sample Kolmogorov-Smirnov (KS) histrogram
consistency tests (Kolmogorov 1933; Smirnov 1948) suggest that,
in general, high luminosity samples are in slightly better agreement
(see Table 1). However, the overall agreement is su�cient (with KS
test p-values ranging from 0.28 to 0.97), thus we aim to test the
consistency of simulations and observations for all void catalogue
versions.

We also find good agreement between void properties of the
simulated and observed catalogues using the VIDE algorithm on
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Stacking methodology

• Cutting out patches of the CMB 
convergence map centered at the 
void center position using healpix 
tools (Górski et al., 2005); 

• Re-scaling the patches given the 
angular size of voids; 

• Stacking all patches and measure 
the average signal in different 
concentric radius bins around the 
void center.  

 

5 times the void radius
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Figure 2. Simulated signal-only stacked  images from MICE (left) in comparison to noise-added versions (centre) and observed DES Y1 stacked results
(right) for the HL20 version of 2D voids. All versions of our results are displayed, without smoothing (top) and with FWHM= 1� (middle) or � = 1� (bottom)
Gaussian smoothings are used. The re-scaled void radius R/Rv = 1 is marked by the dashed circles. We identify important trends with changing smoothing
scales but overall report good consistency between data and simulations.

the DES Y1 redMaGiC high density sample. We identify a total of
239 voids in DES Y1 data considering the selection cuts explained
above. This is a very conservative cut on the total of 7383 voids
in the DES Y1 VIDE catalogue that also includes smaller and less
significant voids. Our primary goal with this work was to o�er
a robust alternative to 2D voids, and we thus leave the further
optimization of the VIDE sample for future work.

4 SIMULATED CROSS-CORRELATION ANALYSES

4.1 Stacking  maps on void positions

The CMB lensing imprint of single voids is impossible to detect (see
e.g. Krause et al. 2013). We therefore apply an averaging method
using cutouts of the CMB map at void positions (see e.g. Kovács
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Figure 4. Comparison of the radial  imprint profiles of 2D voids in the MICE simulation and in DES Y1 data. We show results based on all three  map
smoothing strategies, including no smoothing (left), FWHM= 1� smoothing (middle), and � = 1� smoothing (right). For completeness, we present the imprints
for all 2D void catalogue versions including HD10, HD20, HL10, and HL20 from top to bottom. Dashed red profiles mark the best fitting MICE templates
considering the DES measurements.
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• while approximately two thirds of the S/N is contained inside
the void radius (R/Rv < 1) and in the close surroundings (1 <
R/Rv < 2), measuring the cumulative S/N up to (R/Rv = 5) does
increase the detectability and provides a way to test convergence to
zero signal at large radii.

• the highest S/N is achieved by stacking all voids, even if some
voids are expected to contribute with less pronounced signal and
higher noise at small scales (see Kovács et al. 2017, for a counter-
example in the case of ISW imprints).

In terms of di�erent tracer density and smoothing, the highest
S/N is found when using the high luminosity catalogue with 10
Mpc/h smoothing (HL10). We note that such a result is not unex-
pected, given the wider redshift range and the larger fraction of deep
voids in the case of the HL sample (see Figure 1).

We estimate S/N = 4.0 for the case of no  map smoothing,
while we find an even higher S/N = 4.8 and S/N = 4.5 for Gaus-
sian smoothings using FWHM= 1� and � = 1�, respectively. We
use S/N and A/�A interchangeably to refer to the signal-to-noise
throughout the paper. We consider a DES Y1 measurement config-
uration and resulting errors and a MICE ⇤CDM signal (A = 1) of
the simulated 2D voids.

Nevertheless, all measurement configurations show moder-
ately significant S/N & 3 CMB lensing signals for voids in a survey
such as DES Y1, and thus we will measure the corresponding ob-
served lensing imprint of all DES void catalogues and smoothing
versions. See again Figure 2 for details.

We note that the main results above are based on the full
void sample with a variety of redshifts in 0.2 < z < 0.7. For
completeness, we also performed a simple redshift binning test for
voids of size 20 Mpc/h < rv < 70 Mpc/h. We found no clear
evidence for redshift evolution in their CMB lensing profile.

4.4.2 VIDE voids

Because in this paper we consider VIDE voids as a consistency test,
we do not formally optimize the signal-to-noise for the VIDE void
sample. Relatedly, we do not have a single recipe for pruning param-
eters in the presence of photo-z errors for 3D voids. Nevertheless, as
explained in Section 3.3.2, we apply various pruning cuts in order
to ensure a detectable CMB lensing signal in the MICE simulation
and therefore also in DES Y1 data (see Figure 3). These cuts result
in 1687 VIDE voids in the MICE octant to be used in the stacking
measurement, and 239 voids in the DES Y1 redMaGiC high den-
sity data. We present a comparison with 2D void types in Table 2,
finding good consistency in void number counts.

Overall, we find S/N = 2.3 for the case of no  map smooth-
ing, while S/N = 2.0 and S/N = 2.1 for Gaussian smoothings
using FWHM= 1� and � = 1�, respectively. In these tests, we again
consider a MICE ⇤CDM imprint signal (A = 1) and a DES Y1 mea-
surement configuration and resulting errors (�A) of the simulated
VIDE voids.

We note that our pruning cuts in fact remove most of the voids
from the original catalogue; thus the VIDE catalogue may promise
higher S/N with further optimization. However, for our purposes
of studying a sample complementary to the 2D void analysis the
sample defined above is adequate. We leave the optimization of
VIDE catalogues for CMB lensing measurements for future work,
including tests of VIDE voids in high luminosity tracer catalogues
that appear more promising for the 2D void definition.

No smoothing

Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.27 3.13 2.38 4.00 3.85

DES Y1 2.25 2.47 3.29 3.04 3.36

FWHM= 1� smoothing

Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.00 3.70 2.94 4.76 4.17

DES Y1 2.42 3.30 2.79 3.48 3.58

� = 1� smoothing

Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.13 3.70 3.33 4.55 4.00

DES Y1 2.11 2.89 2.40 4.91 3.19

Table 2. Signal-to-noise ratios (A/�A) are listed for all measurement con-
figurations using MICE and DES Y1 signals. We compare three di�erent
smoothing strategies and five void catalogue versions.

5 RESULTS FOR OBSERVATIONS: DES Y1 ⇥ PLANCK

We measure the stacked imprint of DES Y1 voids with the same
methodology and parameters as in the case of the MICE mock.
Together with the MICE results, the stacked  images of the DES
Y1 void catalogues are shown in Figures 2 and 3 for 2D and VIDE
voids, respectively. We find good consistency between simulations
and observations for all void definitions, smoothing strategy, and
tracer density.

We then use the stacked images to calculate a radial  imprint
profile in order to quantify the results, relying on the noise analysis
we introduced above. We present these results below and provide a
detailed description of our constraints on the A amplitude of DES
Y1 and MICE void lensing profiles.

5.1 2D voids

We continue our data analysis with the DES Y1 2D void catalogues
that promised higher S/N in our MICE analysis, where, recall, we
forecasted S/N ⇡ 4.8 for the high luminosity catalogue.

We compare the stacked images of the  imprints in the high
luminosity catalogue with 20 Mpc/h smoothing in the galaxy density
map in Figure 2 as a representative example of all 2D void results. A
visual inspection shows good agreement between MICE and DES
Y1  imprints both in the centres and surroundings of the voids.
We find consistency for all  smoothing strategies and report that
similar conclusions can be drawn from stacked images from other
void catalogue versions (see also Figure 3).

We then also measure the azimuthally averaged radial imprint
profile in the stacked images to quantify the results. We present the
results in Figure 4 for all four 2D void catalogue versions HD10,
HD20, HL10, and HL20. The shaded blue regions mark 1� errors
computed with 500 random realizations of the stacking measure-
ment on the MICE  map with Planck-like noise included, while
the error bars around DES Y1 measurements show the correspond-
ing uncertainties for the DES data. We observe a good general
agreement in the sign and the shape of the observed and simulated
profiles. Negative  values in the interior of voids plus an extended
range of positive convergence in the surroundings. We note that
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Figure 6. We provide a detailed comparison of measurement significance in the form of A/�A. The conservative VIDE sample also provides useful consistency
tests in agreement with our 2D analyses. The dashed horizontal lines mark the mean of the DES Y1 (dark) and the MICE (light) significances with values 3.03
and 3.39, respectively.

their methodology but we put more emphasis on simulation analy-
ses to detect a signal with DES data, given di�erent galaxy tracer
density and void finding methods. In particular, we used simulated
DES-like redMaGiC galaxy catalogues together with a simulated
lensing convergence map from the MICE Grand Challenge N-body
simulation to test our ability to detect the CMB lensing imprint of
cosmic voids.

We constrained the ratio of the observed and expected lensing
systems, which we called A. We first analyzed the signal-to-noise
corresponding to the CMB  profile of MICE redMaGiC voids.
We considered di�erent void populations including 2D voids and
VIDE voids in 3D. We varied the galaxy density and also the initial
smoothing scale applied to the density field to find the centres of the
2D voids (see Sánchez et al. 2017, for details). These parameters
a�ect the significance of the measurement as the total number of
voids, mean void size, underdensity in void interiors, and their depth
in their centres are all a�ected by these choices and hence so is the
resulting lensing signal and noise.

We then comprehensively searched for the best combination
of parameters that guarantees the best chance to detect a signal with
observed DES data. We concluded that the lower tracer density of
the higher luminosity redMaGiC galaxy catalogue is preferable to
achieve a higher signal-to-noise for both 10 Mpc/h and 20 Mpc/h
initial Gaussian smoothing. We tested to prospects of using sub-
classes of voids instead of the full sample, but concluded that stack-
ing all voids is preferable for the best measurement configuration
with DES Y1 data.

We also tested the importance of post-processing in the MICE 
map. We experimentally verified that Gaussian smoothing of scales
FWHM= 1� and � = 1� reduce the size of the small-scale fluctu-
ations in the lensing map while preserving most of the signal. For
completeness, we created stacked images for all smoothing versions
and provided a detailed comparison of the results. In the MICE
analysis, we found that the best measurement configurations to
detect a stacked signal are achieved when considering a 2D void
catalogue with high luminosity tracers and 10 Mpc/h initial density
smoothing (HL10), exceeding S/N ⇡ 5 for all three  smoothing
strategies.

We then identified voids in the observed DES Y1 redMaGiC
catalogue and compared their properties with MICE voids. In gen-
eral, we found a good agreement when comparing observed 2D and
VIDE void catalogues with both DES Y1-like MICE mocks that we

used for predictions. We repeated the simulated stacking analyses
using the observed Planck CMB lensing map. The signal-to-noise
is typically slightly lower than expected from MICE, due to a trend
of lower amplitudes at the level of A ⇡ 0.8 in some of the cases.
Nevertheless, given the measurement errors, we detected a stacked
signal of voids with amplitudes consistent with A ⇡ 1.

Overall, we robustly detected imprints at the 3� significance
level with most of our analysis choices, reaching S/N ⇡ 4 in
the best predicted measurement configurations using DES Y1 high
luminosity redMaGiC data. We found that VIDE voids provided
similar imprints in the CMB lensing maps, albeit at consistently
lower S/N than 2D voids. This finding, however, is not unexpected
given the conservative cuts we apply to select our VIDE sample. We
leave the possible further improvements in the VIDE analysis for
future work.

Regarding the previously reported excess ISW signal in DES
void samples compared to ⇤CDM simulations, however, we con-
clude that the excess in the CMB temperature maps at void locations
has no counterpart in the Planck CMB lensing map. This finding
does not necessarily invalidate the ISW tension. First, Cai et al.
(2017) also reported excess ISW signals using BOSS data, but found
a stacked  signal in good agreement with ⇤CDM simulations. Sec-
ond, no detailed simulation work has jointly estimated the ISW and
CMB lensing signal of voids in some alternative cosmologies. It
is yet to be analyzed if the excess ISW signal should always be
imprinted in the corresponding CMB  map. Such simulation anal-
yses could potentially exclude the coexistence of an enhanced ISW
signal and a ⇤CDM-like CMB  imprint, pointing towards some
exotic systematic e�ect that results in an ISW-like excess in Planck
temperature data aligned with the biggest voids in both BOSS and
DES data.

Our goal for the future is to create a bigger catalogue of voids,
and potentially superclusters, using galaxy catalogues from three
years of observed DES data (DES Y3). These presumably more
accurate future detections with more voids will most probably allow
cosmological parameter constraints as suggested by e.g. Chantavat
et al. (2016). Furthermore, joint analyses of CMB lensing and galaxy
shear statistics may constrain modified gravity models (see e.g.
Cautun et al. 2018; Baker et al. 2018).

In the near future, beyond a better understanding of the method-
ologies, new simulations and new cosmic web decomposition data
from experiments such as the Dark Energy Spectroscopic Instru-
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Quick Conclusions 

• We study cosmic voids identified in Dark Energy Survey galaxy samples, culled 
from the first year of observations. We relied on the redMaGiC sample of lu- minous 
red galaxies of exquisite photometric redshift accuracy to robustly identify cosmic 
voids in photometric data. We then aimed to cross-correlate these cosmic voids with 
lensing maps of the Cosmic Microwave Background using a stacking methodology. 

• We then comprehensively searched for the best combination of parameters that 
guarantees the best chance to detect a signal with observed DES data. We concluded 
that the lower tracer density of the higher luminosity redMaGiC galaxy catalogue is 
preferable to achieve a higher signal-to-noise for both 10 Mpc/h and 20 Mpc/h initial 
Gaussian smoothing. 

• We robustly detected imprints at the 3σ significance level with most of our analysis 
choices, reaching S/N ≈ 4 in the best predicted measurement configurations using 
DES Y1 high luminosity redMaGiC data. 
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Motivation: Massive Neutrinos and voids

Figure 5. Average total matter density profiles around voids with different sizes: Re↵=10-11
Mpc/h (top), Re↵=16-18 Mpc/h (center), and Re↵=20-25 Mpc/h (bottom). Left and right panels
show results at redshifts z = 0 and z = 1, respectively. Red, purple, blue and green lines show the
0.0, 0.15, 0.3 and 0.6 eV cosmologies, respectively. At the bottom of each panel we display the ratio
between the results from the massive neutrino cosmologies and the ⇤CDM one. The vertical dashed
black lines indicate the mean value of the void radii in the selected range and two times the same
quantity.

– 11 –

Fingerprints of Massive Neutrinos on Cosmic Voids 3

neutrinos use a fast linear response algorithm (Ali-Häımoud
& Bird 2013). Due to the impact of mass resolution on
the halo catalogs, we now denote the DEMNUni simulations
as ‘low-res’ and the MassiveNuS simulations as ‘high-res’
throughout our analysis. We note, however, that both the
simulation mass resolution and the simulation volume im-
pact the size of the voids:

• For a fixed simulation volume: a lower mass resolution
simulation has more large voids than a higher mass reso-
lution simulation. Conceptually, this can be thought of in
terms of the simulation’s minimum halo mass– a larger min-
imum halo mass yields larger voids. We describe this further
in subsubsection 3.2.1 and section 4.

• For a fixed simulation mass resolution: the size of the
largest void is larger for the simulation with larger volume2.
For example, in our work, the maximum void radius in the
DEMNUni massless neutrino CDM field is 79 h

�1Mpc, whereas
the maximum void radius in the MassiveNuS massless neu-
trino CDM field is 37 h

�1Mpc. Further, the void abundance
smoothly decreases as a function of void size. Thus, there
will be a greater number of the small simulation’s largest
voids in the larger simulation. This, then, causes the larger
simulation to have better uncertainties for measurements
relating to large voids since the larger simulation has more
large voids than the smaller simulation.

Therefore, the DEMNUni simulations contain more large voids,
and larger voids in general, than the MassiveNuS simulations
due to both DEMNUni’s lower mass resolution and larger vol-
ume.

The sum of neutrino masses
Õ

m⌫ is varied in each
simulation suite with other cosmological parameters kept
fixed. The DEMNUni simulations assume a baseline cosmol-
ogy according to the Planck results (Planck Collaboration
et al. 2013), with h = 0.67, ns = 0.96, As = 2.1265 ⇥ 10�9,
⌦m = 0.32, and ⌦b = 0.05. The relative energy densities
of cold dark matter ⌦c (and neutrinos, ⌦⌫) vary for each
model as ⌦c = 0.27, 0.2659, 0.2628 and 0.2573, for

Õ
m⌫ = 0,

0.17, 0.30 and 0.53 eV, respectively. In the considered cases,
since As is fixed while varying the neutrino mass, the sim-
ulations with massive neutrinos have a lower value of �8
with respect to the massless neutrino ⇤CDM case. We use
the three fiducial models of MassiveNuS in this work, whereÕ

m⌫ = 0, 0.1, 0.6 eV and all other parameters are held con-
stant at As=2.1⇥10�9, ⌦m=0.3, h=0.7, ns=0.97, w=�1, and
⌦b=0.05.

We use the public void finder VIDE3 to locate voids in
the simulations (Sutter et al. 2015). Because the void finder
runs on a tracer distribution and uses the position of these
objects, we can find voids from both the halo distribution (in
this work we use the friends-of-friends (FoF) catalogs) and
the CDM particle distribution. For the latter, running the

2 An important caveat to this is if voids have a maximum physical
scale and if both simulations are large enough to capture this
physical scale. In this case, the size of the largest void in each
simulation (even if the simulations have di↵erent volumes) would
be the same. In our work, however, our simulations only contain
voids in size up to ⇡ 100h�1Mpc, and voids of this size have been
observed (see e.g. Figure 1 in Hamaus et al. 2017).
3
https://bitbucket.org/cosmicvoids/vide_public, version

most recently updated on 2017 � 11 � 27.

Figure 1. Void abundance in the sub-sampled cold dark matter
field of the DEMNUni simulation. Colors denote the sum of neu-
trino masses used in each simulation. The bottom panel shows
the ratio between void number densities (with uncertainties) for
di↵erent

Õ
m⌫ values and the number density in the massless neu-

trino case. Increasing
Õ
m⌫ increases the number of small voids

and decreases the number of large voids derived from the particle
field. All abundance plots are cut at ⇠ 2 times the mean particle
separation in the simulation and where voids are so large that
there are too few voids for informative uncertainties. All figures
are for z = 0.
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Figure 2. Void abundance in the halo field of the ‘low-res’ sim-
ulation. Colors denote the sum of neutrino masses used in each
simulation. The bottom panel shows the ratio between void num-
ber density with uncertainties for the di↵erent

Õ
m⌫ values and

the number density in the massless neutrino case. Increasing
Õ
m⌫

decreases the number of small voids and increases the number of
large voids derived from the halo field.
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Figure 2. lolo

Figure 3. Cosmic voids found in the ⇤CDM DEMUNNi simulations using the 2D void finder from Sánchez et al. (2017)

5.1 stacking methodology

However the signal-to-noise ratio of a lonely large structure in the
the CMB radiation is above 1, therefor, to reach detectable level of
the imprint of large structure in the CMB radiation recent analysis
have shown that using a stacking methodology was a good compro-
mise. We are cutting patches of 5 times the void radius (Rv) in the
smoothed CMB maps at voids positions. We rescale the patches in
order to have patches of similar size and stack them pixel by pixel.

Once the stacked image is computed is possible to reconstruct the
averaged convergence profile at void position.

5.2 Error computation

Eric baxter in is paper have been using 100 regions (if think this
is a good compromise for the full sample more than 150 voids per
region) Norberg et al. (2009)

should we jackknife or random position on the CMB? starting
to implement jackknife analysis on the pipeline, open question,

MNRAS 000, 1–8 (2015)

2 XXX

2.3 The CMB maps

2.3.1 Born approximation

2.3.2 Ray tracing and CMB reconstruction

Fabbian et al. (2018)

3 VOID FINDING

3.1 The void finder

Void definition is playing an important role in the cosmology we
wish to infer. Sánchez et al. (2017) presented a void finder that
identify 2-dimensional under densities in the matter field. The finder
has been run on the halo catalogs from the DEMUNNi simulation
presented in sect.(2). The void finder works as following :

• Divide the tracer sample in redshift slices, of a predefined size
s.
• Convert each redshift slice in an Healpix (Górski et al. (2005))

map, with each pixel taking the value of the number of object in it
• Smooth tne pixelized map with a gaussian kernel with a

smoothing scale left as free parameter.
• select the most underdensed pixel in a slice
• compute the density in concentric shells around the void until

the shell density reaches the mean slices density.
• reiterate the process for the next most underdense pixels in the

slice

In Sánchez et al. (2017), it has been shown that an optimal size
for the redshift slices in comoving distance to optimize void iden-
tification in the context of photometric redshift uncertainties was
sv = 100Mpc/h, What about decreasing this value since we are
in accurate redshift simulations

3.2 Density field tracer

3.2.1 di�erent tracer tests

• Test changing the cut on the DM halo mass
• Putting a weight on DMHalo with respect to its mass

3.3 Overdensity inversed process

need to estimate the halo radius from the mass
or inverting the voiding finding process, look for super-cluster

of halos.

4 THE VOID CATALOGS

The void finder has been run for three di�erent smoothing parame-
ters for both ⇤CDM and massive neutrino cosmologies:

• 10Mpc/h, 153830 voids
• 20Mpc/h, 85386 voids
• 30Mpc/h, 48648 voids

and in for the massive neutrino cosmology :

• 10Mpc/h, – voids
• 20Mpc/h, – voids
• 30Mpc/h, – voids

The di�erence in this smoothing parameter will have as impact
a di�erence in the void properties, smaller the smoothing larger the
number of small voids.

In Massara et al. (2015) and Kreisch et al. (2019), the authors
found using VIDE’s voids identified in Dark matter Halo catalogs
tends to be less numerous while m⌫ is decreasing. In other way
the presence of massive neutrinos tends to reduce the amount of
small voids and increase the number of big voids which has for
consequence an smaller number of voids.

• redshift distribution
• Radius distribution
• Density profile : make a fit for the universal void profile from

Hamaus et al. (2014)?

⇢v
⇢̄

� 1 = �c
(1 � (r/rs)↵)
(1 + (r/rv)�)

(2)

5 IMPRINT ON THE CMB MAPS

Similarly to the correlation that have been observed between
the CMB radiation and the overdensities identified in the fore-
ground matter field, cosmic void in principle should show an anti-
correlation.

5.1 stacking methodology

To reach detectable level of the imprint of large structure in the
CMB radiation recent analysis have shown that using a stacking
methodology was a good compromise. We are cutting patches of
5 times the void radius (Rv) in the smoothed CMB maps at voids
positions. We rescale the patches in order to have patches of similar
size and stack them. Once the stacked image is computed is possible
to reconstruct the averaged convergence profile at void position.

5.2 Error computation

Eric baxter in is paper have been using 100 regions (if think this
is a good compromise for the full sample more than 150 voids per
region) Norberg et al. (2009)

should we jackknife or random position on the CMB? starting
to implement jackknife analysis on the pipeline, open question,
should we do jackknife on Halos and then run the finder, or apply
the jackknife only when we stack?

CJK (pi, pj ) =
(NJK � 1)

NJK

NJK’
n=1

(pni � p̄i)(pnj � p̄j ) (3)

hartlap correction Hartlap et al. (2007)

5.3 Signal to noise evaluation

5.4 Imprint in CMB temperature

Previous measurement of the imprint of cosmic voids in the CMB
temperature fluctuations using the stacking methodology presented
in sec.5.1 have shown discrepencies between ⇤CDM similations
and observed datas.

�T
TCMB

= � 2
c3

π �CMB

0
d�
@�

@ �
(4)
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Step 1 : building the catalog(s) and validate them
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Step 2 : Cross-correlate with CMB and look for a 
signal
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Step 3 : Study subpopulation lensing profiles to 
improve our S/N

6 XXX

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

R
/
R

v

20 < Rv(Mpc/h) < 40 40 < Rv(Mpc/h) < 60

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

R
/
R

v

60 < Rv(Mpc/h) < 80 80 < Rv(Mpc/h) < 100

5.0 4.0 3.0 2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0
R/Rv

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

R
/
R

v

100 < Rv(Mpc/h) < 120

5.0 4.0 3.0 2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0
R/Rv

120 < Rv(Mpc/h) < 300

�3.0

�2.4

�1.8

�1.2

�0.6

0.0

0.6

1.2

1.8

2.4

3.0

�
�

1
0

3

Figure 9. Void radius evolution of the void imprint on the CMB convergence map
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Figure 10. Void radius evolution of the void imprint on the CMB conver-
gence map
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Figure 11. redshift evolution of the void imprint on the CMB convergence
map per void size

7.3 Noise e�ect on CMB map

In order to be more realistic in forecasting the reacheble level of
detection of void imprint, it is also important to mimic the noise
signal that CMB observation are subject to.

7.3.1 Planck noise

7.3.2 Future CMB experiment noise

LiteBird, Polarbear, CMB-S4 (ask Davide for noise maps)
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Step 3 : errors estimation

2 XXX

2.3 The CMB maps

2.3.1 Born approximation

2.3.2 Ray tracing and CMB reconstruction

Fabbian et al. (2018)

3 VOID FINDING

3.1 The void finder

Void definition is playing an important role in the cosmology we
wish to infer. Sánchez et al. (2017) presented a void finder that
identify 2-dimensional under densities in the matter field. The finder
has been run on the halo catalogs from the DEMUNNi simulation
presented in sect.(2). The void finder works as following :

• Divide the tracer sample in redshift slices, of a predefined size
s.
• Convert each redshift slice in an Healpix (Górski et al. (2005))

map, with each pixel taking the value of the number of object in it
• Smooth tne pixelized map with a gaussian kernel with a

smoothing scale left as free parameter.
• select the most underdensed pixel in a slice
• compute the density in concentric shells around the void until

the shell density reaches the mean slices density.
• reiterate the process for the next most underdense pixels in the

slice

In Sánchez et al. (2017), it has been shown that an optimal size
for the redshift slices in comoving distance to optimize void iden-
tification in the context of photometric redshift uncertainties was
sv = 100Mpc/h, What about decreasing this value since we are
in accurate redshift simulations

3.2 Density field tracer

3.2.1 di�erent tracer tests

• Test changing the cut on the DM halo mass
• Putting a weight on DMHalo with respect to its mass

3.3 Overdensity inversed process

need to estimate the halo radius from the mass
or inverting the voiding finding process, look for super-cluster

of halos.

4 THE VOID CATALOGS

The void finder has been run for three di�erent smoothing parame-
ters for both ⇤CDM and massive neutrino cosmologies:

• 10Mpc/h, 153830 voids
• 20Mpc/h, 85386 voids
• 30Mpc/h, 48648 voids

and in for the massive neutrino cosmology :

• 10Mpc/h, – voids
• 20Mpc/h, – voids
• 30Mpc/h, – voids

The di�erence in this smoothing parameter will have as impact
a di�erence in the void properties, smaller the smoothing larger the
number of small voids.

In Massara et al. (2015) and Kreisch et al. (2019), the authors
found using VIDE’s voids identified in Dark matter Halo catalogs
tends to be less numerous while m⌫ is decreasing. In other way
the presence of massive neutrinos tends to reduce the amount of
small voids and increase the number of big voids which has for
consequence an smaller number of voids.

• redshift distribution
• Radius distribution
• Density profile : make a fit for the universal void profile from

Hamaus et al. (2014)?

⇢v
⇢̄

� 1 = �c
(1 � (r/rs)↵)
(1 + (r/rv)�)

(2)

5 IMPRINT ON THE CMB MAPS

Similarly to the correlation that have been observed between
the CMB radiation and the overdensities identified in the fore-
ground matter field, cosmic void in principle should show an anti-
correlation.

5.1 stacking methodology

To reach detectable level of the imprint of large structure in the
CMB radiation recent analysis have shown that using a stacking
methodology was a good compromise. We are cutting patches of
5 times the void radius (Rv) in the smoothed CMB maps at voids
positions. We rescale the patches in order to have patches of similar
size and stack them. Once the stacked image is computed is possible
to reconstruct the averaged convergence profile at void position.

5.2 Error computation

Eric baxter in is paper have been using 100 regions (if think this
is a good compromise for the full sample more than 150 voids per
region) Norberg et al. (2009)

should we jackknife or random position on the CMB? starting
to implement jackknife analysis on the pipeline, open question,
should we do jackknife on Halos and then run the finder, or apply
the jackknife only when we stack?

CJK (pi, pj ) =
(NJK � 1)

NJK

NJK’
n=1

(pni � p̄i)(pnj � p̄j ) (3)

hartlap correction Hartlap et al. (2007)

5.3 Signal to noise evaluation

5.4 Imprint in CMB temperature

Previous measurement of the imprint of cosmic voids in the CMB
temperature fluctuations using the stacking methodology presented
in sec.5.1 have shown discrepencies between ⇤CDM similations
and observed datas.

�T
TCMB

= � 2
c3

π �CMB

0
d�
@�

@ �
(4)
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4 XXX

Figure 4. distribution in radius of the voids per redshift slice

Figure 5. Density profile per redshift bin

should we do jackknife on Halos and then run the finder, or apply
the jackknife only when we stack?

CJK (pi, pj ) =
(NJK � 1)

NJK

NJK’
n=1

(pni � p̄i)(pnj � p̄j ) (3)

hartlap correction Hartlap et al. (2007) ↵ = (Njk � Nbins �
1)/(Njk � 1)

5.3 Signal to noise evaluation

5.4 Imprint in CMB temperature

Previous measurement of the imprint of cosmic voids in the CMB
temperature fluctuations using the stacking methodology presented
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in sec.5.1 have shown discrepencies between ⇤CDM similations
and observed datas.

�T
TCMB
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c3

π �CMB

0
d�
@�

@ �
(4)

5.5 Imprint in CMB lensing map

Similarly to the previous section, it is also possible to measure the
imprint of cosmic voids in lensing convergence maps from the CMB
radiation. The lensing convergence can be related to the underlying
gravitationnal potential as :

 = r2� (5)

With a significance of 3.2�, the first detection of this imprint has
been presented in Cai et al. (2017).

However Nadathur et al. (2017) have shown using simulation
that this imprint changes depending on the void population, indeed
smaller voids that tends to be deeper will have a more marked
imprint than bigger shallower voids. In Nadathur et al. (2017)
they have been using a � parameter that takes into account the
size and density and the void, maybe we could use it as well

5.5.1 redshift evolution

5.5.2 Void radius evolution

5.6 Overdensities vs voids

5.6.1 Halos in voids

In Zhang et al. (2019) the author have shown that halos that resides
in underdensed regions will be more sensitive to neutrino mass,
here we could select halos inside our void sample to check they cmb
imprint for both massive neutrinos and massless neutrino.

MNRAS 000, 1–8 (2015)

Note : We are thinking on the feasibility to 
evaluate the covariance from various 

realisations
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Going Further: Voids VS Clusters
Short title, max. 45 characters 7

Figure 10. Void radius evolution of the void imprint on the CMB conver-
gence map

Figure 11. redshift evolution of the void imprint on the CMB convergence
map per void size

7.3 Noise e�ect on CMB map

In order to be more realistic in forecasting the reacheble level of
detection of void imprint, it is also important to mimic the noise
signal that CMB observation are subject to.

7.3.1 Planck noise

7.3.2 Future CMB experiment noise

LiteBird, Polarbear, CMB-S4 (ask Davide for noise maps)
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Going even more far away (TO DO LIST)

• Compare the signal going beyond Born 
approximation for the CMB lensing reconstructed 
map  

• Vary matter field tracer (Galaxies, 
clusters,filaments…) 

• Try other simulations (Flagship, DUSTGRAIN) 
• Try other void definitions (3D voids?)

CONCLUSION

We have simulations, we have cross-correlation signal, we 
still have plenty of test to do but things are moving forward
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Figure 11. Harmonic space redshift tomography of the auto- (left column) and cross- (right column) correlations. The panels from top to bottom describe the
results of photo-z bins of increasing redshift. The solid lines show our fiducial cosmology rescaled by the best-fit linear bias b up to weakly non-linear scales
`NL marked with an arrow (for the auto-spectra) or the cross-correlation amplitudes A = bALens over the whole range of scales (cross-spectra); the best-fit
biases and amplitudes are reported in the captions with their 1� errors. The dotted lines are linear theory predictions, and the error bars are from the full
N-body covariance estimator. In agreement with the real-space analysis and with Crocce et al. (2016), the auto-correlation in the lowest (and less significantly
in the highest) redshift bins does not match the theoretical expectation on non-linear scales, which are discarded from our bias fits anyway.

gent than the 20% we use in the real-space analysis above; this is
because, even with linear ` binning and logarithmic # binning, the
harmonic space analysis is more sensitive to non-linear scales than
the real-space measurement, where information from all scales is
mixed. Applying a 20% threshold in harmonic space would leave
only one data point in the galaxy auto-spectrum, while using a 50%
criterion in real space would lead to the inclusion of all data points.
For the same motivations as above, we do not apply such a scale
cuto↵ (beyond our Gaussian smoothing of the maps) when fitting
the cross-correlation amplitudes A, so that we do not expect a per-
fect match between the two amplitudes. The upper panel of Fig. 10
shows that the galaxy auto-power is best fit by our fiducial cosmol-
ogy with linear galaxy bias b = 1.22± 0.04, up to `NL (dashed line)
and assuming the N-body covariance. From the central panel, we
see that the cross-correlation with SPT is best fit by a lower am-
plitude value, A = 0.84 ± 0.15 (solid line), which is ⇠ 2� smaller.
Likewise, the bottom panel shows that the cross-correlation with
Planck is also lower than expected from the galaxy auto-spectrum:
A = 0.81 ± 0.20.

We summarise our harmonic-space results in detail in the right
section of Table 1, where we show the results with the N-body
covariance matrix. The best-fit linear galaxy bias from the auto-
spectrum is typically ⇠ 2� higher than the best-fit amplitude of the

galaxy-CMB lensing cross-correlations, in agreement with what we
find in real space. The cross-correlation significance of a detection
is ⇠ 6� for SPT and ⇠ 4� for Planck; these numbers are in agree-
ment with the real-space analysis results. We note that we do not
expect a perfect agreement between the two analyses as they in-
volve di↵erent estimators that weight physical scales in a di↵erent
way; however, thanks to the Gaussian smoothing we apply to data
and mocks, which e↵ectively makes both estimators band-limited,
we do manage to recover a good agreement. We test in Section 5.3
below the consistency between the real- and harmonic-space esti-
mators, and their degree of correlation. We can see from the �2 per
degree of freedom that our best fits are good fits. Finally, we point
to Section 6.3 for an analysis of the stability of the results with
respect to di↵erent choices in the multipole range considered.

5.2.4 Redshift tomography in harmonic space

In analogy to the real space results discussed above, we then mea-
sure the redshift tomography of the auto- and cross-spectra. The
left column of Fig. 11 shows the auto-power of DES galaxies for
the five photo-z bins we consider. The solid lines show the best-fit
linear galaxy bias to the measured spectra, and the error bars are
from the N-body estimator. In each case, we only include in the

MNRAS 000, 1–32 (2016)
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Figure 7. Measured auto- (left) and cross-correlation functions (right) of DES-SV main galaxies as a function of photometric redshift. The panels refer to thin
photo-z bins, from low to high redshift. The error bars are derived from the N-body covariance matrix. The lines show the fiducial Planck cosmology rescaled
by the best-fit linear bias or amplitude obtained from the auto- (dashed) and from the cross-correlations (solid); for each case, the linear theory is shown with
thin dotted lines. The best-fit bias values and their 1� errors are also shown in each panel; the coloured bands represent 1 and 2� uncertainties on the best
fits. When fitting the auto-correlation bias, the points at # < #NL have been excluded from the fit, consistently with Crocce et al. (2016), as they lie in the
non-linear regime where the non-linear corrections are > 20%. All points are included in the cross-correlation fits. The auto-correlation results are presented
and discussed in more detail by Crocce et al. (2016), including a further discussion on the anomalous behaviour of the lowest-redshift bin at small angular
scales.

rameters that increase with redshift. The bias values we obtain are
fully consistent with the main results by Crocce et al. (2016), thus
validating both analyses. In the cross-correlation case, we also find
an agreement with the same model, although the uncertainties and
the scatter are larger than what we find for the full sample, espe-
cially at low redshift. Both auto- and cross-correlations agree less
well with the expectations in the first bin at 0.2 < zphot < 0.4; see
Crocce et al. (2016) for a more detailed discussion of the possible
residual systematics in this bin.

We summarise in Table 2 the best-fit biases and amplitudes of
the cross-correlations with their errors, assumed Gaussian. We see
that we do recover a significant correlation (at > 2�) in all bins
and > 3� in all but the lowest redshift bin; however, the best-fit
cross-correlation amplitude recovered fluctuates significantly with
respect to the expectation, and with respect to the best-fit bias. We

see that the trend of obtaining A(z) < b(z) is recovered in most
redshift bins, confirming what we find for the full sample. We also
show that the reduced �2 associated with the best-fit bias and am-
plitudes are close to 1 in most cases, indicating that our estimate of
the covariances is realistic, and that our best-fit model is consistent
with the observations. The only notable exceptions are the galaxy
auto-correlations in the first and last redshift bins. We discuss be-
low in Section 7 the cosmological implications of these results.

5.2 Harmonic space analysis

While measurements of the angular correlation function are for-
mally fully equivalent to the information contained in the power
spectrum, there are fundamental di↵erences that warrant a detailed
comparison. The harmonic space has some well-known advantages

MNRAS 000, 1–32 (2016)
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Figure 21. Reconstructed measurements of the redshift evolution of lin-
ear bias b(z) from galaxy auto-correlations, as also presented by Crocce
et al. (2016) (top panel), galaxy-CMB lensing cross-correlation amplitudes
A(z) from the cross-correlations (central panel) and linear growth function
from the DG(z) estimator (bottom panel) from the combined tomography
of galaxy clustering and galaxy-CMB lensing correlations. The red (round)
points are derived from the correlation functions, while the blue (square)
points are from the angular power spectra. The purple dashed line shows
the mean best fit amplitude to DG with 1 and 2� uncertainty bands. We
also show for comparison the best-fit bias model of Eq. (34) in the top
and central panels (dotted lines), and the theoretical growth function for
the Planck fiducial cosmology in the bottom panel (thick solid line). The
low values of A we observe translate into a preference for a lower DG in
most redshift bins.

Fig. 21. Here we plot the redshift evolution of linear bias (top
panel), galaxy-CMB lensing cross-correlation amplitude (central
panel) and the linear growth function derived with the DG estimator
(bottom panel).

The evolution of galaxy bias is presented and discussed in
more detail by Crocce et al. (2016); we follow this study, and com-
pare the bias with a simple third-order polynomial fit, which was
shown in Appendix A by Crocce et al. (2016) to be in good agree-
ment with results from the MICE N-body simulations:

b(z) = 1 + a1z + a2z2 + a3z3 . (34)

We show in the top panel of Fig. 21 that the best-fit model by
Crocce et al. (2016), of parameters a1 = 0.87, a2 = �1.83,
a3 = 1.77 is also an excellent fit to our measurements in both real
and harmonic spaces, further validating both analyses.

We show in the central panel of Fig. 21 the redshift evolution
of the galaxy-CMB lensing correlation amplitude A = bALens: as
shown above in Table 2, A is in most cases lower than the expected

value given the auto-correlations. We can see once again that real-
and harmonic-space results agree well, with the one exception of
the third bin cross-correlation, as discussed above in Section 5.2.4.

We then focus on the linear growth function: we show in
the bottom panel of Fig. 21 the results from the DG estimator of
Eq. (32) for real and harmonic spaces, where we use scales at
` < 1000 only. We see that the data prefer a smaller growth of struc-
ture than what is expected in the fiducial Planck⇤CDM model: this
result is driven by the lower than expected values of the observed
galaxy-CMB lensing correlations. The estimators in real and har-
monic space agree well in most bins.

If we assume the template shape of DG(z) to be fixed by the
fiducial Planck cosmology and we fit its amplitude AD, so that

DG(z) = AD [DG(z)]fid , (35)

we find AD = 0.76 ± 0.17 from the real-space analysis and AD =

0.70±0.15 in harmonic space. As the two results are consistent and
there is no reason to prefer one over the other, we take their mean
as our main result:

AD = 0.73 ± 0.16 , (36)

where the error is also the mean of the errors, as the two methods
are based on the same data. This result includes the full covariance
between the photo-z bins, which is typically 30% between neigh-
bours. We note that, as discussed above in Section 6.2, if the real
redshift distribution of the galaxies in all bins is narrower than our
assumption, the tension could be alleviated, but the photo-z alone
are unlikely to be responsible for this discrepancy in full. In partic-
ular we have tested that, if we use the alternative BPZ photo-zs, we
obtain AD = 0.70 ± 0.16, in agreement with the TPZ results.

We can then assess the significance of the discrepancy with
respect to the fiducial Planck cosmology. From the point of view
of template fitting, the mean best-fit value is 1.7� away from the
fiducial value AD = 1. Alternatively, we perform a null hypothesis
test and find that the �2 di↵erence between the best fit and the fidu-
cial model is ��2 = 7.2 in real space (10.5 in harmonic space) for
4 degrees of freedom, corresponding to a PTE = 13% in real space
(3.3% in harmonic space). We therefore conclude that the observed
tension is only weakly significant. We discuss however in the fol-
lowing what the implications could be, if the lower AD persists with
more accurate measurements.

The DG estimator retains a dependence on the ratio between
the real and the fiducial values of the background parameters
⌦mh2�8 ⌘ !m�8; it is thus in principle possible to attribute the
observed mismatch to a preference for di↵erent parameter values.
The parameter shift required is large compared with the current
CMB constraints from Planck (Planck Collaboration et al. 2015c):
in order to shift the amplitude AD from its best-fit value 0.73± 0.16
to 1, would require a fractional decrease in !m�8 of 27%.

It is worth mentioning that in the last few years several inde-
pendent measurements of LSS probes have hinted at low signifi-
cance towards low growth in recent times, including measurements
of �8 from galaxy clusters (Bocquet et al. 2015), weak lensing
(MacCrann et al. 2015), redshift-space distortions (Beutler et al.
2014), and a combination of probes (Ruiz & Huterer 2015). It is
important to stress that, in most cases, alternative analyses showing
weaker or no tension do exist, e.g. by Samushia et al. (2014) for
RSD, and by Mantz et al. (2015) for galaxy clusters. Only better
data in the near future will clarify whether statistical flukes, sys-
tematic e↵ects or new physics are behind these observations; we
prefer for the moment to avoid over-interpreting the results, and we
defer to the upcoming DES year-1 data a more detailed study that

MNRAS 000, 1–32 (2016)
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[15]. The faint angular bins have been excluded from the fits, consistently with [39] and with [30]. The theory modeling shown uses the mean
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maps in G16 for consistency, but this had the unwanted con-
sequence of then spreading the shot-noise contribution (which
in position-space is normally confined to the zero-separation
bin) out to larger angular separations, thus requiring a more
complex modelling (see Appendix B of G16).

A. Correlation function

We measure both the auto-correlation of the galaxy den-
sity field and the cross-correlation between galaxies and CMB.
The former is calculated using the Landy-Szalay estimator
[44]:

w�g�g (✓↵) =
DD(✓↵) � 2DR(✓↵) + RR(✓↵)

RR(✓↵)
, (8)

with

DD(✓↵) =
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NDD
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where ⌘D are the weights for the individual galaxies deter-
mined from cross-correlation with systematic maps (for ran-
doms ⌘R = 1, see [39] for further details), N✓ are the total
number of pairs of a given type [data-data (DD), data-random
(DR), random-random (RR)] in a given angular bin ✓↵, and
⇥↵(✓̂i � ✓̂ j) is 1 if a pair lies at an angular distance ✓ within the
angular bin ↵ and 0 otherwise. Random galaxies are generated
uniformly over the union of the galaxy and CMB masks, and
are included in the random catalog with probabilities match-
ing the weight fi at the pixel which the random galaxies fall
onto.4

For the correlation function between a galaxy catalog and
a pixellated map such as the CMB lensing convergence map,
the correlation function is calculated using:

w�gCMB (✓↵) = DCMB(✓↵) � RCMB(✓↵), (12)

with

DCMB(✓↵) =
1
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4 Here, we only consider the weights coming from the galaxy mask, although
both the galaxy and CMB masks are used to determine the valid pixels.

where ⌘CMB
j is the value of the mask, and CMB, j is the value

of convergence at the j-th pixel.5 In measuring the auto-
correlation of galaxy density, we use 20 bins equally spaced
in logarithm between 2.50 < ✓ < 2500; these angular bins
are consistent with those of [39]. For w�gCMB (✓), we use 10
equally log-spaced angular bins over the same angular range
due to the higher noise levels of this measurement. The mea-
surements in both cases are carried out using the TreeCorr
package.6

Unlike G16, we do not perform a harmonic analysis in
this paper since the other DES-Y1 two-point analyses are all
conducted in position-space, and our goal is to combine our
measurements with those. We note that C(`) estimators al-
low one to get a complementary understanding of systematics
to those a↵ecting the position-space estimators and are ex-
pected to yield consistent results in terms of significance of
the cross-correlation signal and corresponding cosmological
implications (as discussed in detail in G16).

B. Angular scale cuts

Our model for the correlation functions ignores several po-
tential complications, such as the e↵ects of tSZ bias in the
CMB lensing map, the e↵ects of non-linear galaxy bias, and
the e↵ects of baryons on the matter power spectrum. In order
to minimize biases to the inferred cosmological parameters in
our analysis, we remove measurements at angular scales that
we expect to be significantly impacted by these e↵ects.

The choices of these angular scale cuts employed here were
motivated for the analyses of w�g�g (✓) and w�gCMB (✓) in [32]
and [30]. The scale cuts were determined by introducing un-
modeled e↵ects into simulated data vectors and performing
simulated likelihood analyses to infer parameter biases. The
scale cuts ultimately chosen in [32] and [30] were determined
based on the joint analysis of two-point functions between the
galaxy density, galaxy lensing and CMB lensing. Since the
analysis of a single correlation function — such as w�gCMB (✓)
— will necessarily be less constraining, by adopting these
scale cuts in this analysis we are being conservative. It was
shown in [30] that with these scale cuts, the bias on the cos-
mological parameter constraints will be less than 0.4�, where
� represents the statistical uncertainty on the parameters.

The scale cut choices motivated by [32] and [30] result
in removing from the galaxy-CMB lensing cross-correlations
angular scales that are smaller than

✓
�gCMB

min = [150, 250, 250, 150, 150] (15)

for the five redshift bins. The corresponding scale cuts for the
galaxy auto-correlations are [39]

✓
�g�g
min = [450, 250, 250, 150, 150] . (16)

5 Here, we only consider the weights coming from the CMB mask, although
both the galaxy and CMB masks are used to determine the valid pixels.

6
https://github.com/rmjarvis/TreeCorr
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FIG. 5. Growth function estimates from the combination of auto-
and cross-correlation functions, at the fiducial cosmology. The red
points show the measured value of DG in each redshift bin, with er-
ror bars representing the diagonal elements of the covariance matrix
described in Sec. IV D 2. The grey band represents the 1� confi-
dence interval on the best-fit amplitude AD, assuming the fiducial
⇤CDM template shown in black (solid), and the red shaded regions
describe the 1-� uncertainties from the joint-fit analysis described in
Sec. VI B 2.

ination by astrophysical foregrounds (whereas the SPT
lensing map used in the G16 analysis had `max = 4000).

Therefore, we have exchanged signal-to-noise ratio with in-
creased robustness of the measurement.

We have tested that the general scale cuts used by [30] are
also appropriate for the DG estimator. We have confirmed this
by running the estimator on contaminated theory data vectors,
for which we found that the bias on the recovered growth is
always < 0.5� if the standard scale cuts of Sec. IV B are used.
This is not the case for less conservative cuts, which we there-
fore discard: for example, using the full range of scales down
to 20 biases DG at the 2� level. The bias at small angular
scales is mainly driven by the tSZ contamination in the CMB
lensing map, as discussed in [30].

2. Joint growth fit results

Here we keep the cosmological parameters fixed to the fidu-
cial model, but marginalize over the five independent linear
galaxy bias parameters (one for each redshift bin), the photo-z
uncertainties and the linear growth parameter AD using the
priors presented in Table II. We measure the linear galaxy
bias to be b1 = 1.45+0.30

�0.15, b2 = 1.73+0.26
�0.22, b3 = 1.80+0.17

�0.29,
b4 = 2.04+0.35

�0.21, b5 = 2.15+0.36
�0.24 and find a constraint of AD =

0.92+0.15
�0.10 for the amplitude of the growth function. These mea-

surements of the bias are in agreement with the results shown
in Table III. The recovered growth function agrees with the
fiducial⇤CDM expectation, as the measurement of AD is con-
sistent with 1.0. We observe that the errors on the galaxy bias
are larger compared to a direct best-fit estimation presented in
Sec. VI A. This is due to the fact that the bias and AD param-
eters are correlated. In turn, the fact that the joint-fit method
gets a di↵erent value of AD with respect to the DG method
is because it explicitly takes into account the correlations be-
tween bias and growth.

C. Cosmological parameter estimation

In this section, we present the full cosmological analysis
using the w�g�g (✓)+w�gCMB (✓) data vectors and marginalizing
over all the cosmological parameters and nuisance parameters
(galaxy bias and photo-z bias, but we fix AD = A = 1).

The priors used in this analysis are summarized in Table II,
and are the same as used in [28] to maintain consistency be-
tween the analyses.

In Fig. 6 we show the constraints obtained on matter den-
sity ⌦m and S 8 when all six cosmological parameters, photo-
z errors and linear galaxy biases for the five redshift bins
are marginalized over. This is then compared with the con-
straints from the combination of w�g�g (✓) + w�g�t (✓) as pre-
sented in [28]. We observe that these two measurements
slice through the parameter space slightly di↵erently. Using
w�g�g (✓) + w�gCMB (✓) we obtain ⌦m = 0.276+0.029

�0.030 and S 8 =

0.800+0.090
�0.094, whereas the combination of w�g�g (✓) + w�g�t (✓)

gives us⌦m = 0.294+0.047
�0.029 and S 8 = 0.759+0.037

�0.031. These two re-
sults can also be compared with the constraints from the com-
bination of w�g�g (✓) + w�g�t (✓) + ⇠+/�(✓) (also referred to as
3⇥ 2pt [28]), which gives ⌦m = 0.267+0.030

�0.017, S 8 = 0.773+0.026
�0.020.

These results are highly consistent with each other as shown
on Fig. 6.

The measurement used in this analysis are combined with
the w�tCMB (✓) presented in [29] and the results from [28] in
[31], using the methodology outlined in [30].

VII. CONCLUSIONS

We have presented measurements of the DES redMaGiC
galaxy-CMB lensing cross-correlation as a function of red-
shift. Our measurement rejects the hypothesis of no-lensing
at 19.9�10 significance prior to any scale cuts and 9.9� us-
ing the conservative scale cuts from [30]. The conservative
scale cuts reduce the signal to noise of the measurements in
exchange for mitigation of systematic biases.

10 We note that while certain systematics could add to the apparent signal
and artificially inflate the significance, in this case the main contamina-
tion without scale cuts is tSZ, which artificially reduces w�gCMB . In other
words, in the absence of tSZ and scale cuts, the significance of this mea-
surement would be higher than 19.9 �.
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FIG. 1. Summary of papers presenting analyses of two-point functions of DES-Y1 measurements of projected galaxy density, �g, and shear, �,
as well as cross-correlations with the CMB lensing maps, CMB, from [25]. The blue box represents the joint 3⇥2pt analysis, while the orange
and black boxes represent the 5⇥2pt and 6⇥2pt analyses considered in this work.

q�ig = bi
g

ni
g(z(�))

n̄i
g

dz
d�
, (4)

where ni
s(z) and ni

g(z) are the redshift distributions of source
and tracer galaxies in the ith bin, and n̄i

s and n̄i
g are the corre-

sponding integrated number densities in this redshift bin. In
Eq. 4 we have assumed linear galaxy bias with a single bias
parameter, bi

g, for each galaxy redshift bin i.
The position-space correlation functions can be related to

the harmonic-space cross-spectra as follows. The correlations
of the galaxy density field with itself and with the CMB con-
vergence field are computed via

w�
i
g�

j
g (✓) =

X 2` + 1
4⇡

P`(cos(✓))C�
i
g�

j
g (`) (5)

w�
i
gCMB (✓) =

X 2` + 1
4⇡

F(`)P`(cos(✓))C�
i
gCMB (`), (6)

where P` is the `th order Legendre polynomial, and F(`) de-
scribes filtering applied to the CMB map. For correlations
with the CMB map of [25] (hereafter O17), we set F(`) =
B(`)⇥(` � 30)⇥(3000 � `), where ⇥(`) is a step function and
B(`) = exp(�`(` + 1)/`2beam) with `beam ⌘

p
16 ln 2/✓FWHM ⇡

2120. The motivation for this filtering is discussed in more
detail in B18.

We compute the cosmic shear two-point functions, ⇠+ and
⇠�, using the flat-sky approximation:

⇠i j
+/�(✓) =

Z
d` `
2⇡

J0/4(`✓)C
i
s

j
s (`), (7)

where Ji is the second order Bessel function of the ith kind.
For ease of notation, we will occasionally use w�� to generi-
cally refer to both ⇠+ and ⇠�.

When measuring the cross-correlations between galaxies
and shear, or between CMB and shear, we consider only the
tangential component of the shear field, �t. These correlation

functions are then given by

w�
i
g�

j
t (✓) =

Z
d` `
2⇡

J2(`✓)C�
i
g

j
s (`), (8)

w�
i
tCMB (✓) =

Z
d` `
2⇡

F(`)J2(`✓)C
i
sCMB (`). (9)

In addition to the coherent distortion of galaxy shapes
caused by gravitational lensing, galaxies can also be intrin-
sically aligned as a result of gravitational interactions. We
model intrinsic galaxy alignments using the nonlinear linear
alignment (NLA) model [49], which modifies qis as:

qis (�)! qis (�) � A(z(�))
ni

s((z(�))
n̄i

s

dz
d�
, (10)

where

A(z) = AIA,0

 
1 + z
1 + z0

!⌘IA 0.0139⌦m

D(z)
, (11)

and where D(z) is the linear growth factor and z0 is the redshift
pivot point which we set to 0.62 as done in K17.

We also model two sources of potential systematic mea-
surement uncertainties in our analysis: biases in the photo-
metric redshift estimation, and biases in the calibration of
the shear measurements. Photometric redshift bias is mod-
eled with an additive shift parameter, �z, such that the true
redshift distribution is related to the observed distribution via
ntrue(z) = nobs(z � �z). We adopt separate redshift bias param-
eters �zi

g and �zi
s for each tracer and source galaxy redshift

bin, respectively.
We model shear calibration bias via a multiplicative bias

parameter, mi, for the ith redshift bin. We then make the re-
placements

⇠i j
+/�(✓)! (1 + mi)(1 + mj) ⇠i j

+/�(✓) (12)

w�
i
tCMB (✓)! (1 + mi)w�

i
tCMB (✓). (13)
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FIG. 3. Marginalized constraints on ⌦m and S 8 ⌘ �8(⌦m/0.3)0.5

for the 3⇥2pt (gray) and 5⇥2pt (gold) combinations of correlation
functions in the context of ⇤CDM+⌫ cosmology when priors on
multiplicative shear bias are relaxed (filled contours). In this case,
the cosmological constraints obtained from the 5⇥2pt data vector are
significantly tighter than those resulting from the 3⇥2pt data vector.
The dashed contours show the constraints when the fiducial priors on
multiplicative shear bias (see Table I) are applied.

Sample 3⇥2pt bi 5⇥2pt bi

0.15 < z < 0.30 1.42+0.13
�0.08 1.41+0.11

�0.11

0.30 < z < 0.45 1.65+0.08
�0.12 1.60+0.11

�0.09

0.45 < z < 0.60 1.60+0.11
�0.08 1.60+0.09

�0.10

0.60 < z < 1.75 1.93+0.14
�0.10 1.91+0.11

�0.11

0.75 < z < 1.90 2.01+0.13
�0.14 1.96+0.15

�0.11

TABLE II. Constraints on the linear galaxy bias parameters, bi, from
the 3⇥2pt and 5⇥2pt data vectors for the five redshift samples.

and multiplicative shear bias. For the fiducial DES-Y1 priors
on multiplicative shear bias from DES-Y1-3x2, the degener-
acy breaking is weak since multiplicative shear bias is already
tightly constrained using data and simulation based methods,
as described in [42]. However, if these priors are relaxed, the
5⇥2pt analysis can obtain significantly tighter cosmological
constraints than the 3⇥2pt analysis. In essence, the cosmo-
logical constraints can be made more robust to the e↵ects of
multiplicative shear bias.

The 3⇥2pt and 5⇥2pt constraints on⌦m and S 8 when priors
on multiplicative shear bias are relaxed to mi 2 [�1, 1] are
shown in Fig. 3. In contrast to Fig. 2, the 5⇥2pt constraints
are significantly improved over 3⇥2pt when the multiplicative
shear bias constraints are relaxed.

For these relaxed priors, the data alone calibrate the multi-

Sample 3⇥2pt mi 5⇥2pt mi

0.20 < z < 0.43 �0.03+0.34
�0.16 0.03+0.25

�0.15

0.43 < z < 0.63 �0.02+0.27
�0.14 0.07+0.19

�0.11

0.63 < z < 0.90 �0.04+0.20
�0.15 �0.01+0.13

�0.09

0.90 < z < 1.30 �0.02+0.18
�0.17 �0.08+0.14

�0.08

TABLE III. Constraints on the shear calibration parameters, mi, from
the 3⇥2pt and 5⇥2pt data vectors when priors on mi are relaxed. In
all cases, the posteriors obtained on the mi from the 5⇥2pt analysis
are consistent with the priors adopted in the 3⇥2pt analysis of [9].

plicative shear bias. The resultant constraints on the shear cal-
ibration parameters are shown in Table III. These constraints
are consistent with the fiducial shear calibration priors shown
in Table I. In other words, we find no evidence for unac-
counted systematics in DES measurements of galaxy shear.

We have also performed similar tests for other nuisance
parameters such as photo-z bias and IA. However, the ef-
fect of self-calibration for these other parameters tends to be
smaller than for shear calibration. As shown in B18, this
is because shear calibration, galaxy bias, and As are part of
a three-parameter degeneracy. Consequently, the 3⇥2pt data
vector cannot tightly constrain these parameters without exter-
nal priors on shear calibration. For the other systematics pa-
rameters, however, such strong degeneracies are not present,
and significant self-calibration can occur. Consequently, for
these parameters, adding the additional correlations with CMB
does not add significant constraining power beyond that of the
3⇥2pt data vector.

E. Consistency with Planck measurements of the CMB lensing
autospectrum

While the 5⇥2pt data vector includes cross-correlations of
galaxies and galaxy shears with CMB lensing, it does not in-
clude the CMB lensing auto-spectrum. Both the 5⇥2pt data
vector and CMB lensing auto-spectrum are sensitive to the
same physics, although the CMB lensing auto-spectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ⇠ 2. Consistency between these two
datasets is therefore a powerful test of the data and the as-
sumptions of the cosmological model.

Measurements of the CMB lensing autospectrum over the
2500 deg2 patch covered by the SPT-SZ survey have been ob-
tained from a combination of SPT and Planck data by [25],
and this power spectrum has been used to generate cosmolog-
ical constraints by [68]. Because of lower noise and higher
resolution of the SPT maps relative to Planck, the cosmolog-
ical constraints obtained in [68] are comparable to those of
the full sky measurements of the CMB lensing autospectrum
presented in [21], despite the large di↵erence in sky coverage.

In this analysis, we choose to test for consistency between
the 5⇥2pt data vector and the Planck-only measurement of the
CMB lensing autospectrum. The primary motivation for this
choice is that it significantly simplifies the analysis because it
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FIG. 4. Marginalized constraints on ⌦m and S 8 ⌘ �8(⌦m/0.3)0.5

for di↵erent combinations of correlation functions in the context of
⇤CDM+⌫ cosmology: 5⇥2pt (gold), wCMBCMB (gray) and 6⇥2pt
(purple). The wCMBCMB contours are derived from the Planck 2015
lensing data [21]. The 5⇥2pt contours are identical to those in Fig. 2.
The wCMBCMB constraints are complementary to those of the 5⇥2pt
analysis.

allows us to ignore covariance between the 5⇥2pt data vec-
tor and the CMB lensing autospectrum. This simplification
comes at no reduction in cosmological constraining power.
Furthermore, the SPT+Planck and Planck-only measurements
of the CMB lensing autospectrum are consistent [68].

Ignoring the covariance between the 5⇥2pt data vector and
the Planck CMB lensing autospectrum measurements is justi-
fied for several reasons. First, the CMB lensing auto-spectrum
is most sensitive to large scale structure at z ⇠ 2, at signif-
icantly higher redshifts than that probed by the 5⇥2pt data
vector. Second, the instrumental noise in the SPT CMB tem-
perature map is uncorrelated with noise in the Planck CMB
lensing maps. Finally, and most significantly, the measure-
ments of the 5⇥2pt data vector presented here are derived from
roughly 1300 deg2 of the sky, while the Planck lensing au-
tospectrum measurements are full-sky. Consequently, a large
fraction of the signal and noise in the Planck full-sky lensing
measurements is uncorrelated with that of the 5⇥2pt data vec-
tor. We therefore treat the Planck CMB lensing measurements
as independent of the 5⇥2pt measurements in this analysis.

The cosmological constraints from Planck lensing au-
tospectrum measurements alone are shown as the grey con-
tours in Fig. 4. The constraints from the 5⇥2pt analysis
and those of the Planck lensing autospectrum overlap in this
two dimensional projection of the multidimensional posteri-
ors. We find an evidence ratio of log10 R = 4.1 when eval-
uating consistency between the 5⇥2pt data vector and the
Planck lensing autospectrum measurements, indicating “de-

cisive” preference on the Je↵reys scale for the consistency
model.

When using the PPD to assess consistency, we set D2 equal
to wCMBCMB (✓) and set D1 equal to the 5⇥2pt data vector. The
p-value computed from the PPD is determined to be p = 0.09;
there therefore no significant evidence for inconsistency be-
tween the 5⇥2pt and wCMBCMB measurements in the context of
⇤CDM. The distributions of the test statistic for the data and
realizations are shown in Fig. 6 in the Appendix.

F. Combined constraints from 5⇥2pt and the Planck lensing
autospectrum

Having found that the cosmological constraints from the
5⇥2pt and Planck lensing analyses are statistically consistent,
we perform a joint analysis of both datasets, i.e. of the 6⇥2pt
data vector. The constraints resulting from the analysis of this
joint data vector are shown as the purple contours in Fig. 4
(constraints on more parameters can be found in Section D).

As seen in Fig. 4, the DES+SPT+Planck 5⇥2pt analysis
yields cosmological constraints that are complementary to the
auto-spectrum of Planck CMB lensing, as evidenced by the
nearly orthogonal degeneracy directions of the two contours
in ⌦m and S 8. When combining the constraints, we obtain for
the 6⇥2pt analysis:

⌦m = 0.271+0.022
�0.016

�8 = 0.800+0.040
�0.025

S 8 = 0.776+0.014
�0.021.

The constraints on ⌦m and S 8 are 25% and 24% tighter, re-
spectively, than those obtained from the 3⇥2pt analysis of
DES-Y1-3x2. The addition of Planck lensing provides ad-
ditional constraining power coming from structure at higher
redshifts than is probed by DES.

VII. DISCUSSION

We have presented a joint cosmological analysis of two-
point correlation functions between galaxy density, galaxy
shear and CMB lensing using data from DES, the SPT-SZ
survey and Planck. The 5⇥2pt observables — w�g�g (✓), ⇠±(✓),
w�g�(✓), w�gCMB (✓), and w�tCMB (✓) — are sensitive to both the
geometry of the Universe and to the growth of structure out
to redshift z . 1.3.4 The measurement process and analysis
has been carried out using a rigorous blinding scheme, with
cosmological constraints being unblinded only after nearly all
analysis choices were finalized and systematics checks had
passed.

4 The cross-correlations with CMB depend on the distance to the last scatter-
ing surface at z ⇠ 1100 through the lensing weight of Eq. 3. This sensitivity
is purely geometric, though, and does not reflect sensitivity to large scale
structure at high redshifts.
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