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Dynamics in the outer planetary region

The orbits of comets and asteroids in the outer planetary region
are strongly affected by close encounters with the giant planets.

• An important parameter is the planetocentric velocity:
• fast encounters – with hyperbolic planetocentric orbits – are

effective only if deep;
• slow encounters – with temporary satellite captures – can

greatly modify cometary orbits even if rather shallow.

• The outcomes can be extremely sensitive to initial conditions.

• Here we deal only with fast encounters, in which the
planetocentric velocity of the small body is hyperbolic.



Planetocentric velocity

In the the analytic theory of close encounters (Öpik 1976, Carusi et
al. 1990, Valsecchi et al. 2003, Valsecchi 2006), let us consider the
orbit of given a, e, i of a small body that can encounter a planet on
a circular orbit of radius ap.

From a, e, i we compute U (the modulus of the planetocentric
velocity of the small body) and θ (the angle between ~U and the
heliocentric velocity of the planet):

U =
√

3− T =

√√√√3− ap
a
− 2

√
a(1− e2)

ap
cos i

cos θ =
1− U2 − ap

a

2U
;

U is in units of the heliocentric velocity of the planet.



Planetocentric velocity and Tisserand
parameter

• In the expression for U, T is the Tisserand parameter
(Tisserand 1889a, 1889b).

• Kresák (1972) set the dividing line between asteroids and
Jupiter family comets (JFCs, historically defined as with
P < 20 yr) at TJ = 3.

• Carusi et al. (1987) proposed the dividing line between JFCs
and Halley type comets (HTCs, historically defined as with
20 < P < 200 yr) at TJ = 2.

• Thus, JFCs have 3 > TJ > 2, while HTCs have TJ < 2; note
that many HTCs are on retrograde orbits.



Asteroids in retrograde orbits

Not only HTCs, but also an increasing number of asteroids are
found to be on retrograde orbits. Among them, not surprisingly,
many Damocloids, defined as having TJ < 2.

What processes have transformed the orbits of these bodies from
direct to retrograde?



Pathways to retrograde orbits

Possibilities include:

• residence in the Oort cloud, followed by planetary capture; in
this case, the asteroid may be an extinct comet;

• chaotic evolution to mean-motion or degenerate secular
resonance (like the ν6), with large amplitude changes to
inclination (Greenstreet et al. 2012), helped by the eccentric
Lidov-Kozai mechanism (Lithwick and Naoz 2011, Naoz et al.
2017);

• close encounter with a planet (Rickman et al. 2017).

Here, we concentrate on the last mechanism, in the framework of
the analytical theory of close encounters.



Transition prograde → retrograde

For i = 90◦, U becomes:

U =

√
3− ap

a
,

that implies:
ap
a

= 3− U2.

Substituting back in the expression for θ:

cos θi=90◦ = − 1

U
.

This implies that transitions to retrograde orbits can take place
only if U ≥ 1, no matter what the mass of the planet is.



Transition prograde → retrograde
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The plane U-cos θ; close encounters displace the orbit vertically in
this plane.

For 1 ≤ U, orbits bound to the Sun can only be prograde.

For U ≥
√

3, prograde orbits can only be unbound from the Sun.



The b-plane

In the analytic theory of close encounters:

• the b-plane of an encounter (Kizner 1961)

- is the plane containing the planet and
- is perpendicular to the planetocentric unperturbed velocity ~U;

• the vector from the planet to the point in which ~U crosses the
plane is ~b, and the coordinates of the crossing point are ξ, ζ;

• the coordinate ξ = ξ(a, e, i , ω, fb) is the local MOID;

• the coordinate ζ = ζ(a, e, i ,Ω, ω, fb, λp) is related to the
timing of the encounter.

In the above expressions, a, e, i ,Ω, ω are the elements of the
pre-encounter small body orbit, while fb is the small body true
anomaly and λp the longitude of the planet, both evaluated at the
crossing of the b-plane.



The b-plane circles

The locus of b-plane points for which the post-encounter orbit has
a given value of a′, i.e. of θ′, is a circle (Valsecchi et al. 2000)
centred on the ζ-axis at ζ = D, of radius |R|, with

D =
c sin θ

cos θ′ − cos θ
R =

c sin θ′

cos θ′ − cos θ
,

where the scale factor c = m/U2 is the value of the impact
parameter corresponding to a velocity deflection of 90◦.

These b-plane circles

• are a building block of the algorithm allowing to understand
the geometry of impact keyholes (Valsecchi et al. 2003);

• can be used to explain the asymmetric tails of energy
perturbation distributions (Valsecchi et al. 2000).



Transition prograde → retrograde

To obtain a transition from prograde to retrograde, we need a
close encounter that changes θ into θ′ > θi=90◦.

This is something that we know how to obtain: the b-plane
coordinates must be within the circle of radius |Ri ′=90◦ | centred in:

ξ = 0

ζ = Di ′=90◦ ,

with Di ′=90◦ ,Ri ′=90◦ given by:

Di ′=90◦ =
c sin θ

cos θ′i ′=90◦ − cos θ

Ri ′=90◦ =
c sin θ′i ′=90◦

cos θ′i ′=90◦ − cos θ
.



Mapping the b-plane on the δω-δλp plane

Valsecchi et al. (2018) show that small displacements from the
origin in the b-plane, keeping constant a, e, i ,Ω, can be mapped
linearly onto the δω-δλp plane.

Thus, the b-plane circles become ellipses when the corresponding
initial conditions are considered in the ω-λp plane.



(5335) Damocles

Damocloids take their name from (5335) Damocles, discovered in
1991.

Damocles’ orbit: a = 11.83 au, e = 0.867, i = 61◦.8, TJ = 1.15.

Can encounter Uranus: MOIDU = 0.31 au, TU = 1.99.

An encounter with Uranus can eject Damocles from the planetary
system, or can flip its orbit into a retrograde one.



Circles... really?

On the right: b-plane
circles for a′ =∞ (red) and
i ′ = 90◦ (green) for
encounters of Damocles
with Uranus, whose
cross-section is the blue
circle.

The dots come from a
numerical integration of the
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...and ellipses!

On the right: the points
lying on the b-plane circles
for a′ =∞ (red) and
i ′ = 90◦ are arranged in
ellipses in the initial
conditions δω-δλp plane.
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Potentially Retrograde Asteroids (PRAs)

Let us consider asteroids on prograde orbits such that 1 ≤ U ≤
√

3
with respect to one or more of the outer planets.

These asteroids are “potentially retrograde” because an encounter
with a planet with respect to which they have 1 ≤ U ≤

√
3 could

make their orbit flip to retrograde, still remaining bound to the
Sun.



A Potentially Retrograde NEA: 2009 WN25

The orbit of PRA
2009 WN25 has
a = 3.27 au, e = 0.66,
i = 72◦, MOIDJ = 0.03 au.

With respect to Jupiter it
has U = 1.02.

The cross-section for
flipping to retrograde is 6.3
times larger than that for
Jupiter collision.

The cross-section for
ejection from the Solar
System is 7 times larger
than for Jupiter collision.
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PRA 2014 TZ33

The orbit of PRA 2014 TZ33

has a = 38.32 au, e = 0.76,
i = 86◦.

With respect to Saturn PRA
2014 TZ33 has U = 1.60.

The cross-section for flipping
to retrograde is 215 times
larger than that for Saturn
collision.

The cross-section for ejection
from the Solar System is 144
times larger than for Saturn
collision.
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Interstellar visitors

So far, two interstellar objects have been discovered, the first one
on a retrograde orbit and the other on a prograde orbit.

q (au) e a (au) i (◦) Vhyp (km/s) b� (au)

1I 0.256 1.201 −1.272 122.7 26.4 0.847
2I 2.006 3.354 −0.852 44.1 32.3 2.728

Can objects in orbits like these be captured by, say, an encounter
with Jupiter?



Capture from initial hyperbolic orbits

Using Gauss’ units, consider a planet of mass m on a circular orbit
of radius ap, and a small body on an initial hyperbolic orbit, with
heliocentric velocity at infinity Vhyp, impact parameter with
respect to the Sun b�, and inclination with respect to the orbit of
the planet i .

The problem is then similar to that of studying impacts of
near-Earth asteroids on the Moon, treated analytically in Valsecchi
et al. (2014).



Capture from initial hyperbolic orbits

Semimajor axis, eccentricity and perihelion distance of the orbit are
(k is Gauss’constant):

a = − k2

V 2
hyp

e =

√
k4 + b2�V

4
hyp

k2

q =

√
k4 + b2�V

4
hyp − k2

V 2
hyp

.



Capture from initial hyperbolic orbits

The analytical theory can be applied only if q ≤ ap; the condition
q = ap sets a maximum for b�, equal to:

b�max =

√
ap(apV 2

hyp + 2k2)

Vhyp
;

moreover, in order to allow a close encounter with the planet, the
heliocentric distance of at least one of the nodal points of the orbit
must be equal to ap, which implies:

cosω = ±q(1 + e)− ap
ape

.



Capture from initial hyperbolic orbits

We can then compute the planetocentric velocity U (U is in units
of the heliocentric velocity of the planet):

U =

√
3 +

apV 2
hyp

k2
− 2b�Vhyp cos i

k
√
ap

,

and θ (θ is the angle between the heliocentric velocity of the
planet and the planetocentric velocity of the small body):

cos θ =
1− U2 − ap

a

2U
.



Capture from initial hyperbolic orbits

For given values of Vhyp and of cos i , in order to allow encounters
with a planet on circular orbit of radius ap, the impact parameter
b� must obey:

0 ≤ b� ≤

√
ap(apV 2

hyp + 2k2)

Vhyp
.



Capture from initial hyperbolic orbits
As a consequence, for positive cos i the planetocentric velocity U is
bounded by:

Umin =

√√√√
3 +

apV 2
hyp

k2
−

2 cos i
√

apV 2
hyp + 2k2

k

Umax =

√
3 +

apV 2
hyp

k2
,

while for negative cos i the planetocentric velocity U is bounded by:

Umin =

√
3 +

apV 2
hyp

k2

Umax =

√√√√
3 +

apV 2
hyp

k2
−

2 cos i
√
apV 2

hyp + 2k2

k
.



Capture from initial hyperbolic orbits
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The hyperbolic objects 1I (red dot) and 2I (blue dot) in the plane
U-cos θ relative to Jupiter.

The lines show the range spanned by them keeping Vhyp and i
fixed and varying b�; 2I, for large b�, falls on the left of the
vertical line: in principle Jupiter could capture it to a bound
retrograde helicentric orbit.



Capture from initial hyperbolic orbits

For the comet to be captured as a consequence of an encounter
with the planet, we need to change θ into θ′ ≥ θ′par , where θ′par is
the post-encounter value corresponding to parabolic orbits, given
by:

cos θ′par =
1− U2

2U
.

The b-plane circle corresponding to θ′par is characterized by:

Dpar =
m sin θ

U2(cos θ′par − cos θ)
Rpar =

mc sin θ′par
U2(cos θ′par − cos θ)

.

The probability of crossing the b-plane within this circle is:

p =
m2a2(6U2 − U4 − 1)

πU3a2p sin i
√

2− ap
a −

a(1−e2)
ap

.



Capture from initial hyperbolic orbits

Assuming 2I to have the
same Vhyp and i , but the
maximum value of b�
compatible with an
encounter with Jupiter.

Then, it could be captured
by Jupiter in a bound
heliocentric retrograde
orbit, but most of the initial
conditions leading to
capture would lead to a
collision with the planet.
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Conclusions

Close planetary encounters represent a viable mechanism by which
a small Solar System body can be put in a retrograde orbit and
vice-versa, and an interstellar object can be captured to a bound
heliocentric orbit.

The analytical theory of close encounters allows to identify the
regions of the b-plane and of the initial conditions space where
these post-encounter states occur.

These region can be easily compared to the regions leading to
other interesting orbital outcomes, like planetary collision or
ejection from the Solar System.
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