
Representative Use Cases
for Testing Data

Reduction Pipelines
I. Prandoni (INAF-IRA), M. Rivi (INAF-IRA), M. Vaccari (IDIA)

Observational datasets
Datasets publicly available for testing pipelines optimised for
different purposes and related to fields covered by different
telescopes:

�  COSMOS (2 sq. degrees, also targeted by MIGHTEE)
www.mpia.de/COSMOS
�  Mosaic of 7 pointings in JVLA L-band, 75 MHz bandwidth, 240 hours

observing time

�  mosaic of 192 pointings in JVLA S-band, 2048 MHz bandwidth, 384
hours total observing time (about 20 TBytes)

�  JVLA S-band + X-band ultra-deep pointings (partially overlapping with
CHILES (HI) and CHILES CON-POL L-band), total observing time: 90
hours (S-band) + 100 hours (X-band)

�  Lockman Hole (also observed with WSRT, GMRT, LOFAR)

�  ELAIS N1 (also observed with DRAO, GMRT, LOFAR)

LOFAR HBA deep observation of Cluster Abell 2255 (also observed
with VLA), 110-190 MHz, total observing time: up to 75 hours (about
100 TBytes)

IDIA pipeline - processMeerKAT
https://idia-pipelines.github.io/docs/processMeerKAT

�  Written in Python 2.7

�  Full Stokes calibration (continuum images, polarization
cubes, spectral line cubes) using CASA 5.4.X tasks

�  Uses a purpose-built CASA Singularity container for
parallel processing at IDIA

�  Uses multi-measurement sets (MMS) and MPICASA to
run parallel processes over the cluster (ILIFU)

�  Generates SBATCH files to submit jobs through SLURM
scheduler

LOFAR DD calibration pipelines
Facet calibration for Direction Dependent effects,
available on Singularity container

�  Factor (https://github.com/lofar-astron/factor)

�  Python code exploiting “Generic pipeline” framework
to define basic operations (self-calibration, model
subtraction from data, imaging) as independent
pipelines

�  Uses C/C++ codes of DP3 package for calibration
and C++11 code WSClean for imaging (optimised
for multi-threading)

�  Multi-node asynchronous parallelisation:
�  Submission of independent jobs per facet exploiting

multiprocessing module

�  Splitting of MS per time chunks

LOFAR DD calibration pipelines
Facet calibration for Direction Dependent effects,
available on Singularity container

�  DDFacet (https://github.com/mhardcastle/ddf-pipeline)
�  Uses Python codes: killMS for calibration, DDFacet for

imaging
�  Optimised parallelisation on shared memory (single node)

�  Submission of independent jobs exploiting multiprocessing
and SharedArray modules for:
�  I/O and computation concurrent execution by sharing numpy

arrays and splitting data in chunks

�  SSD deconvolution (default): asynchronous parallel jobs per facet
�  HMP deconvolution: vectorization of numpy expression using

numexpr module

�  Computing intensive part (gridding/degridding) written in C++
and using OpenMP, independent jobs per facet

�  Not limited by the RAM size: data can be split in time chunks
to be read and processed sequentially

Radio data simulations
�  Visibilities simulations including observational effects

(e.g. smearing, parallactic angle, …)

�  Available codes:
�  MeqTrees (within STIMELA package and KERN suite)

http://meqtrees.net
�  Montblanc (tensorflow code exploiting both CPUs and GPUs)

https://github.com/ska-sa/montblanc
�  OSKAR (MPI+CUDA exploiting GPU cluster)

https://github.com/OxfordSKA/OSKAR

�  Use cases:
�  Replace degridding step with model visibilities simulation

using source catalog provided by the deconvolution step
(implemented in DDFacet using Montblanc)

�  Customised tests of existing data reduction pipelines and/or
new data analysis algorithms/schemes

