Representative Use Cases
for Testing Data
Reduction Pipelines

. Prandoni (INAF-IRA), M. Rivi (INAF-IRA), M. Vaccari (IDIA)

T —



Observational datasets

Datasets publicly available for testing pipelines optimised for
different purposes and related to fields covered by different
telescopes:

® COSMOS (2 sq. degrees, also targeted by MIGHTEE)
www.mpia.de/COSMOS

® Mosaic of 7 pointings in JVLA L-band, 75 MHz bandwidth, 240 hours
observing time

® mosaic of 192 pointings in JVLA S-band, 2048 MHz bandwidth, 384
hours total observing time (about 20 TBytes)

e JVLA S-band + X-band ultra-deep pointings (partially overlapping with
CHILES (HI) and CHILES CON-POL L-band), total observing time: 90
hours (S-band) + 100 hours (X-band)

® Lockman Hole (also observed with WSRT, GMRT, LOFAR)
e ELAIS N1 (also observed with DRAO, GMRT, LOFAR)

R HBA deep observation of Cluster Abell 2255 (also obser
0-190 MHz, total observing time:




IDIA pipeline - processMeerKAT

https://idia-pipelines.github.io/docs/processMeerKAT

Written in Python 2.7

Full Stokes calibration (continuum images, polarization
cubes, spectral line cubes) using CASA 5.4.X tasks

Uses a purpose-built CASA Singularity container for
parallel processing at IDIA

Uses multi-measurement sets (MMS) and MPICASA to
run parallel processes over the cluster (ILIFU)

Generates SBATCH files to submit jobs through SLURM
scheduler




LOFAR DD calibration pipelines

Facet calibration for Direction Dependent effects,
available on Singularity container

® Factor (https://github.com/lofar-astron/factor)

® Python code exploiting “Generic pipeline” framework
to define basic operations (self-calibration, model
subtraction from data, imaging) as independent
pipelines

® Uses C/C++ codes of DP3 package for calibration
and C++11 code WSClean for imaging (optimised
for multi-threading)

® Multi-node asynchronous parallelisation:

® Submission of independent jobs per facet exploiting
multiprocessing module

Splitting of MS per time chunks




LOFAR DD calibration pipelines

Facet calibration for Direction Dependent effects,
available on Singularity container

®* DDFacet (https://github.com/mhardcastle/ddf-pipeline)
e Uses Python codes: kilIMS for calibration, DDFacet for
Imaging
® Optimised parallelisation on shared memory (single node)

® Submission of independent jobs exploiting multiprocessing
and SharedArray modules for:

e |/0 and computation concurrent execution by sharing numpy
arrays and splitting data in chunks

e SSD deconvolution (default): asynchronous parallel jobs per facet

e HMP deconvolution: vectorization of numpy expression using
numexpr module

® Computing intensive part (gridding/degridding) written in C++
and using OpenMP, independent jobs per facet

- ® Not limited by the RAM size: data can be split in time
ead and processed sequentially




Radio data simulations

® Visibilities simulations including observational effects
(e.g. smearing, parallactic angle, ...)

® Available codes:

o Meqglrees (within STIMELA package and KERN suite)
http://meqtrees.net

® Montblanc (tensorflow code exploiting both CPUs and GPUs)
https://github.com/ska-sa/montblanc

e OSKAR (MPI+CUDA exploiting GPU cluster)
https://github.com/OxfordSKA/OSKAR

® Use cases:

® Replace degridding step with model visibilities simulation

using source catalog provided by the deconvolution step
(implemented in DDFacet using Montblanc)

® (Customised tests of existing data reduction pipelines and/or
new data analysis algorithms/schemes




