

The GASP survey

GAs Stripping Phenomena in galaxies with MUSE

Alessia Moretti, INAF OaPD

GASP team: PI B. M. Poggianti (INAF-OaPD)

C. Bellhouse (Uni. Birmingham), D. Bettoni (INAF-OaPD), G. Fasano (INAF-OaPD), A. Franchetto (UniPD, INAF-OaPD), J. Fritz (IRyA, UNAM), A. Girdhar (INAF-OaPD), M. Gullieuszik (INAF-OaPD), G. Hau (ESO), Y. Jaffe' (Uni. Valparaiso), S. McGee (Uni. Birmingham), M. Mingozzi (INAF-OaPD), A. Omizzolo (INAF-OaPD, Sp. Vaticana), M. Radovich (INAF-OaPD), S. Tonnesen (CCA, New York), N. Tomicic (INAF-OaPD), B. Vulcani (INAF-OaPD), A. Biviano (INAF-OaTS), T. Deb (Kapteyn, Groningen), M. Verheijen (Kapteyn, Groningen), P. Serra (INAF-OaCA), M. Ramatsokou (INAF-<u>OaCA), K. George(LMU)</u>, R. Paladino (INAF-OaBO), M. Gitti (Uni. BO), A. Ignesti (INAF-OaBO), J. Van Gorkom (Columbia), A. Wolter (INAF-OaBr), E. Roediger (Uni. Hull), A. Lourenco (Uni. Valparaiso), A. Mueller (Uni. Bochum), B. Adebahr (Uni. Bochum), J. Healy (Uni. Cape Town), S. Blyth (Uni. Cape Town)

\rightarrow Local staff

B. Poggianti	A. Moretti	M. Gullieuszik	B. Vulcani	D. Bettoni	G. Fasano	A. Omizzolo	M. Radovich	
		100000000000000000000000000000000000000						

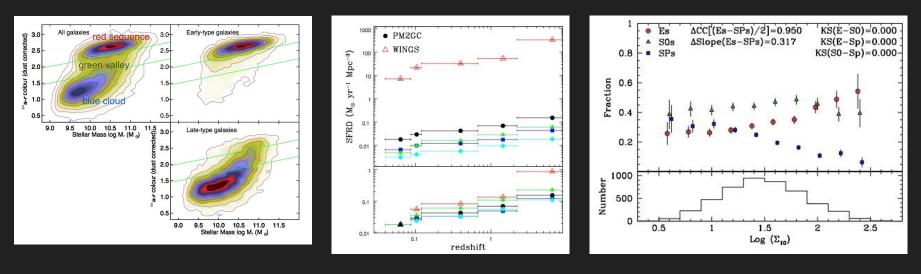
 \rightarrow The Postdocs

Neven Tomicic (PhD in Heidelberg)

Matilde Mingozzi (PhD in Bologna - starting from October 2019)

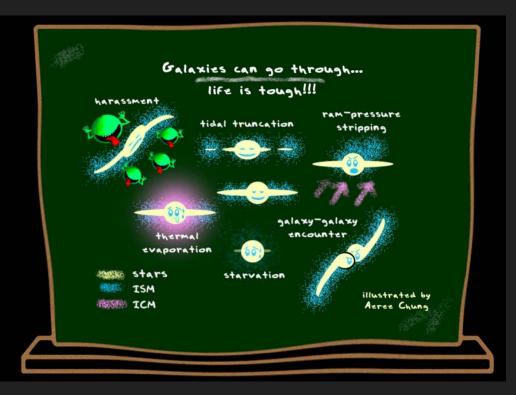
 \rightarrow The students

Andrea Franchetto (PhD)


Aishwarya Girdhar (Master, w. G. Rodighiero)

What do we do: galaxy evolution in different environments

Galaxy morphology/color/SF linked to Mass and Environment: how?

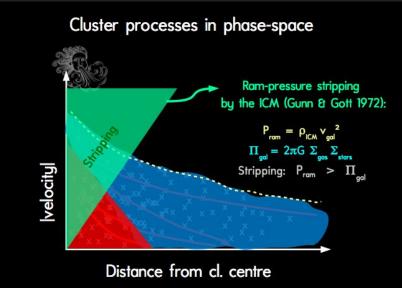


Guglielmo+2015, WINGS

Fasano+2015, WINGS

SF is efficiently suppressed in galaxy clusters and ET galaxies are dominant in the densest (central?) regions

The complicated life of a galaxy


 \rightarrow RPS, strangulation (fast and slow gas-only removal)

- \rightarrow mergers, tidal interaction (gas and stars)
- \rightarrow internal mechanisms (AGN, stellar winds)

All these mechanisms lead to a change (more often suppression or quenching) of the galaxy Star Formation by altering the gas content

The ram pressure stripping

The jellyfish galaxies

"Galaxies with clearly distorted images, with optical data resolving multiple filaments offset asymmetrically from the galaxy " [Smith et al., 2010, UV asymmetry]

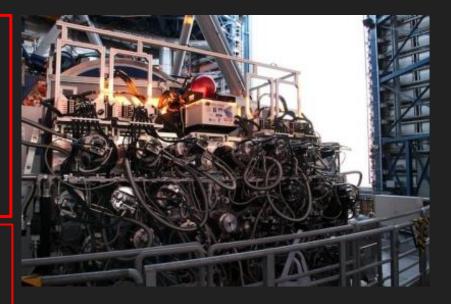
Owen et al., 2006; Cortese et al., 2007; Owers et al., 2012 - ACS data z>0.2

IC 3418 in Virgo Hester+2010, Fumagalli+2011, Kenney+2014

The GASP survey GAs Stripping Phenomena in galaxies with MUSE

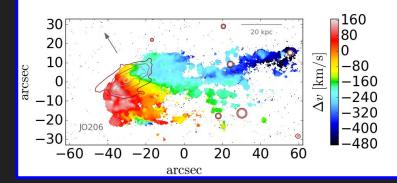
 \rightarrow 114 [94+20] gx, 120 hrs, 2700s/pointing, 1e5 spectra/pointing

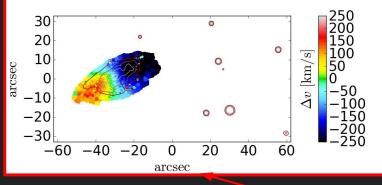
 \rightarrow 0.2"/px, 2.5 A FWHM, 4700-9300


 \rightarrow Fov (1'x1')~60x60 kpc² (4-10 Re)

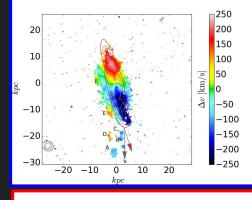
 \rightarrow Completed in 2018 (already ESO Phase 3)

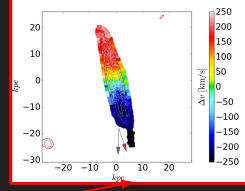
 \rightarrow Galaxies in different environments (clusters, groups, field+control sample)


 \rightarrow Galaxies with different masses (from 10⁹ to 10^{11.5} M_{\odot})


 \rightarrow Galaxies with different stripping signatures (Jclass 1-5, taken from Poggianti et al., 2016)

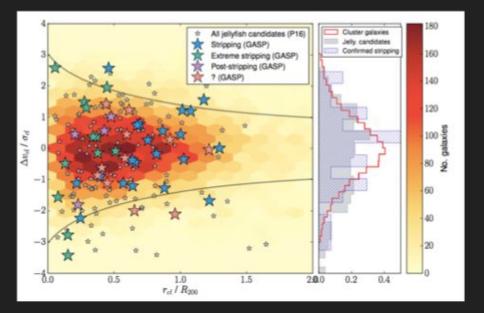
A1069_B_0103	A3128_B_0148	A3128_B_0248	A3158_11_91	A3158_B_0223	A3158_B_0234	A3266_B_0257	A3376_B_0214	A3376_B_0261	A500_22_184	A500_F_0152	A970_B_0338	JO10	JO102	JO112
	1					1								10
JO113	JO119	JO123	JO128	JO13	JO134	JO135	JO138	JO141	JO144	JO147	JO149	JO153	JO156	JO157
		1.2				1	1			1				/
JO159	J0160	JO162	J017	J0171	J0175	JO179	JO180	JO181	J0190	JO194	JO197	JO20	JO200	JO201
J0204	JO205	JO206		J023	JO24	J027.	JO28	J036	JO41		JO45	JO47		
JO49	105	0901	8901	JO69	J070	JO73	280L	9801	J093	J095	JW10	JW100	JW105	JW108
JW115	JW29	JW36	JW39	JW56	P11695	P12823	P13384	P14672	P15703	P16762	P17048	P17945	P18060	P19482
P20159	P20769	P20883	P21734	P25500	P3984	P40457	P42932	P443	P45479	P48157	P4946	P5055	P5169	P5215
P57486	P59597	P63661	P63692	P63947	P648	P669	P8721	P877	P95080	P954	P96244	P96949	B	
												N.	A at	ater toping Arenomend


The GASP survey results: YES RPS is at work



Gas vs stellar kinematics to infer ram pressure stripping

 \rightarrow RPS effective in low and high mass clusters


Different stripping stages!

Fritz+2017 (GASP III)

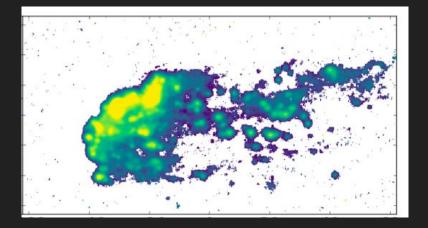
OaPD days, Padova, 2019 June 17-18

Poggianti+2017a (GASP I)

The GASP survey results: and we understand which galaxies it affects. In particular, jellyfish galaxies are at peak stripping

Jaffè+2018 (GASP IX)

Jellyfish galaxies are those undergoing the strongest ram pressure (peak stripping)

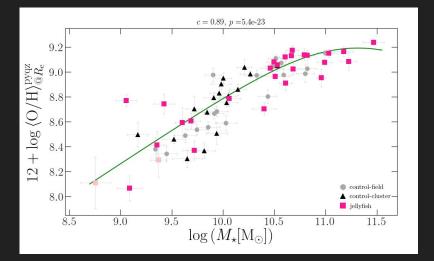

 \rightarrow Inside R200 JF avoid the virialized part of the clusters (confirmed by 2d KS test)

 \rightarrow Extreme JF all within 0.5xR200, and most have $|\Delta v|/\sigma>1$ i.e. where RPS is expected to be more efficient

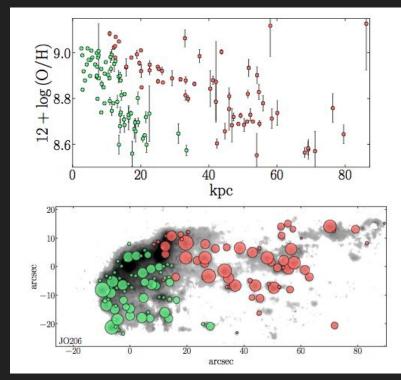
 \rightarrow Both extreme and mild stripping galaxies are recent infallers (but with different distributions)

 \rightarrow Post-stripping galaxies closer to the center (deceleration post pericentric passage?)

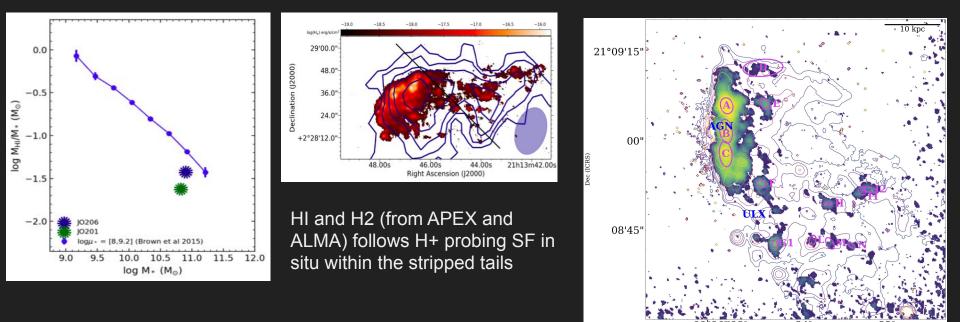
The GASP survey results: while quenching the overall SF RPS (initially) enhances the SF in the disk and in the tails


SFR in the tails is typically 2-5% (up to 20%) of the total SFR, within giant (Carina Nebula) and SuperGiant (30Dor) HII regions Poggianti+2019 (GASP XIII)

contro 0.50 ¹]) disk 0.25 0.00 0 og(SFR[M -0.25 -0.50-0.7-1.009.5 10.5 11.0 11.5 10.0 $\log(M_*[M_{\odot}])$ disk


1.00

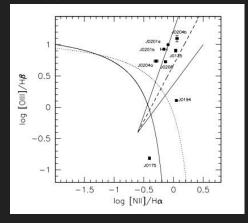
Vulcani+2018c (GASP XIV)


The GASP survey results: leaving unaltered the metallicity within Re and producing different gradients in the tails (TBC)

Mass-metallicity relation at Re from IFU spectroscopy for different samples of galaxies / Metallicity gradients in JF galaxies Franchetto+, in prep

The GASP survey results: the picture starts to be confirmed by the study of the other gas phases

Ramatsoku+2019 (GASP XVII)

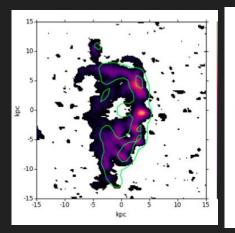

HI gas (from JVLA) depleted

OaPD days, Padova, 2019 June 17-18

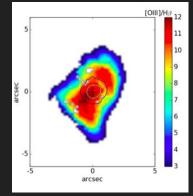
Moretti+, in prep.

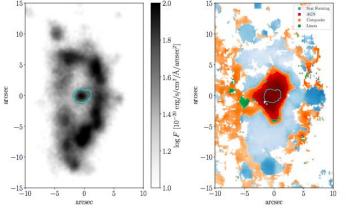
The GASP survey results: and our JF host AGNs (SURPRISE!) \rightarrow AGN and RPS are connected

JFs in the BPT diagram: 5 Sy2, 1 Li

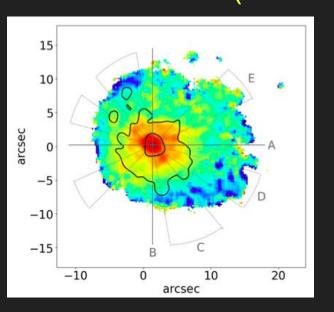


Poggianti+2017b (GASP VI)

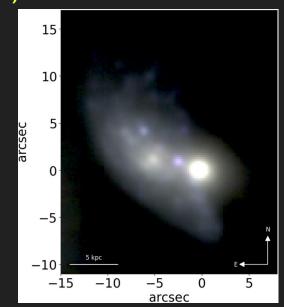

Multiphase view of JO201 with CO hole, UV cavity, AGN central dominated region (8 kpc)


George+2019 (GASP XVIII)

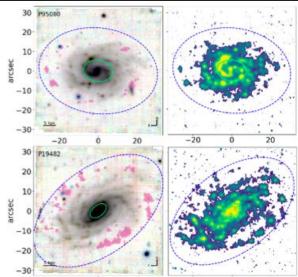
Resolved line ratios confirming AGN origin



Radovich+2019 (GASP XIX)



The GASP survey results: other processes at work in different environments (+RPS?)



Evidence of gas accretion (mainly through metallicity gradients)

Vulcani+2018a (GASP VII)

Evidence of merging between ET and LT galaxies (+Tidal dwarf) Vulcani+2017 (GASP VIII)

Peculiar Ha distribution in galaxies along filaments possibly due to cosmic web enhancement

Vulcani+2019a (GASP XVI)

Thanks!

