Astroinforrhatics and Astrophysics

a virtuous SV“%ESY e gBlg Data era
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Transformation and Synergy

All sciences in the 21t century is becoming cyber-science (aka e-science) and with this change comes the need for a
new scientific methodology.

The challenge we are tackling: Hypothesis-driven science Data-driven science
management of large, complex, distributed data sets
‘ Hypothesis/theory Data sets and streams
effective exploration of such data = new knowledge ‘ ‘

these challenges are universal! Data exploration,

[ Experiment J Pattern discovery

a virtuous synergy between computationally enabled

science and the science-driven IT .’ l'
[ Data analysis J ‘ Hypothesis/theory ‘
‘ Understanding L Data analysis }

\ 2

[ Understanding ]

The two approaches are
complementary
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=7 Why Astrophysics is a Big Data case

Formally, Big Data is a system whose data are characterized by the “3 critical V” rule (Volume, Velocity, Variety)

* The information volumes and
rates grow exponentially

—> Most data will never be seen by
humans

o

* Agreatincrease in the data informatton content
—> Data driven vs. hypothesis driven science

* Agreatincrease inthe
information complexity
—> There are patterns in the data that

cannot be comprehended by
humans directly
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The evolving data-rich Astronomy

An example of a “Big Data” science driven by the
advances in computing/information technology

1980 1990 2000 2010 2020
MB GB B PB EB
CCDs Surveys VO Astrolnfo
Image P Laal,
S roc: : SKA...
Pipelines
Databases

Machine Learning Al

Key challenges: data heterogeneity and complexity
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Traditionally, Astronomy was a data-starved science.
Our approach to research and our analysis methods
were shaped by this environment. Surveys are altering
it; data is becoming abundant and of unprecedented

UAQ o8rey

quality.

PL 45amg¢ and:

Upcoming surveys will cap this transformation. For
example LSST will deliver positions, magnitudes and
variability information for virtually everything in the
southern sky to 24t — 27t magnitude, with an order of
magnitude better controlled systematics than current

itup” v)‘)u.wm\‘ Jd«ﬂﬂ

surveys.

Future
surveys
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Astron. &  Probability/Information
Astrophysics theory and data analysis

*’  Doing Astronomy in the age of large surveys
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Computer science
and programming

We are entering the age of abundance of high quality data.
Success in research will depend on the ability to analyze and mine knowledge from that data.
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Astroinformatics

is essentially astronomical applications of Data Science

DEIERTIE I Astrolnformatics SRS ide]06]11)"

It contains all of the components of Data Science, in their
« While VO became a global data grid of astronomy, astronomical applications

astroinformatics focuses of the knowledge discovery tools

Data Analytics

* Itincludes a growing community of scientists, both as

. L Machine Learning ]
contributors and as users

Data Data
systems Analytics

* Like other X-Informatics (X = bio, geo, ...) it is a bridge [ (AStro)StatiStics}
between astronomy and data science, and for the

methodology sharing with other fields.

[ Numerical Methods }

L Visualization }
... etc. /

.. and their interconnections
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Astroinformatics — new perspective

Characterize the known
Feature selection, Parameter space analysis This is the Important Bit: From Data to Knowledge

Assign the new from the known

Supervised learning, Regression, classification Computationally (and cognitively) And
expensive, science-case speciific metadatal
Explore the unknown
Clustering, unsupervised learning SEioitiste
Discover the unknown scientists Mlodel € inference — Data Projects
Outlier detection and analytics (serendipity) e : ;
Scientists Scientists Projects Projects - Projects
Benefits of very large datasets: Model <€ inference— Catalog < Data Processing— Data

IH

Statistics of “typical” events, cross-correlation,

automated search for “rare” events

Computationally expensive, general
Computationally cheaper, Reprojection; may or may not involve
Easier to understand, compression

Science-case specific Almost always introduces some
information loss
Data Processing == Instrumental
Calibration + Measurement
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http://dame.fisica.unina.it/ ~~. Catalogue cross-matching Y |,
C3

Database Management System -
(see Giuseppe’s talk) /' . Table/image analysis, )
\_monitoring and statistics €ucc

‘. (see Giuseppe’s talk)
\

\

\\ Time series prediction ¢
and classification (LSTM) ™

Clustering

\
\
1
|
I
| e
I H 7
, (Growing Neural Gas)

Bayesian Augmenting with \

: : Im I
Gaussian Analytics for Stream, )/ age/catalogue

/ source classification
Data Mining web app. Includes:«
ISSST «* MLPQNA neural networks

augmentation (GAN) g
s Support Vector Machine

el % Random Forest, K-Means, SOM, genetic a|g0rith ms Workshop Laboratorio Spettroscopia INAF — Roma, 10-11 Giugno, 2019


http://dame.fisica.unina.it/
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Parameter Space Exploration

Exploration of Parameter Spaces is a Central
Problem of Data Science

Clustering, classification, correlation and outlier searches, ...

f Machine Learning Is the Key Methodology

Challenges:

* Algorithm and data model
choices

* Dataincompleteness

* Feature selection and
dimensionality reduction

* Uncertainty estimation
* Scalability

S . . . Especially
: = -+ Visualization 7 . "
... etc. dimensionality

Djorgovski
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Supervised or Unsupervised?...

Classification, Clustering, and Outllers

* Supervised learning (classification): use a known
set of objects to train a classifier
— Hard to find previously unknown things
* Unsupervised learning (clustering): let the data tell
you how many different kinds of things are there
— Could find previously unknown types as outliers

Supervised Algorithms Unsupervised Algorithms

Neural Networks (MLP) K-Means : i
| figure of merit

Boltzmann Machines There is no “one

RBM : : ” RDF
Decision Trees size fits all Fuzzy Clustering . . . ) )
: Supervised Learning : Unsupervised Learning
Nearest NEIgthI’ different Choices CURE i
Naive Bayes Classifiers ROCK Input: a list OL?bkj)e?ts with measured Input: a list of objects with measured
. 1 . ; roperties and labels. : roperties.
Bayesian Networks for different Vector Quantization Prop ;PP
Gaussian Processes Pr ilistic Principal The algorithm is optimizing a score The algorithm detects clusters,
. p rOb | ems obabilistic cipa (cost function) that depends on the : complex relations, outliers, or reduces
Regressmn Surfaces input labels and predicted labels. the dimensions of the dataset.
Prior knowledge is required! Prior knowledge isn’t required!
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Deep Learning
What do we put as input?

M

PRE-PROCESS DATA TO EXTRACT MEANIN
INFORMATION

THIS IS GENERALLY CALLED EEATURE EXTRACTION

GEUL

Spiral!

Merger!

AGN!

Emission line!

Clump!

THIS IS A CHANGE OF PARADIGM!

Machine Learning

R

Input Feature extraction Classification Output

Deep Learning

& — 277 — I

Input Feature extraction + Classification Output
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original

Generative Adversarial Networks

Data Augmenting

=3

[1 Convolution Elementwise Sum [] PReLU

1 Batch Norm [ Residual Block

Generator

-
U

»
»

CNN training

Discriminator
gy deconvolved
[0 Convolution [J Leaky ReLU Dense

Batch Norm [J Convolutional Block [ P(true)

’_T
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Use case example: ALMA datacube analysis

Study of overdensities within high-redshift QSO As higher luminous sources, QSOs are more easily detectable

(4.65<2<6.67) environments: proto-clusters tracers at high-z. Thus they are ideal as proto-cluster tracers

ALVIA cintareror e th Goe et reathiie Lya cannot be used a.s cold gas tr.ace.r at high-z, mostly due to
. . : the ISM obscuring, contamination by sky rows etc.

an angular resolution = optical telescopes, ideal at

mm and sub-mm frequencies- A valid alternative is Cll in the FIR at A=158 and z>6, as the

ALMA more effective than HST to detect CH at high- L dominant cooler of ISM in star-forming galaxies (~0.1% - 1%
z and able to avoid spectro follow-up to derive f contribution to the FIR galaxy luminosity) and with a
Spec-z sufficient luminosity to derive a precise spec-z

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

Band  frequency

(GHz)/(mm)

o))

V)T

Transmission

@

' ) "ll (\4 2 4(
)ll () 275. l(]‘) 14)

: . 10 787.0-950.C ).32-0.3& ) 200 100 600 o -t“mo‘ o 3000
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ALMA datacube analysis

Each datacube section shows the source surface

brightness I, . (v) for each sky pixel (x,y) Data sample: 21 sources in 4.65<z<6.5, Cll at A=0.158um

Source spectrum for each pixel showing I, (v) or
flux density I, (A) = full F, (v) or F, (A)

. Image at a single wavelength
Spectrum from one pixel g _ _
/ /
>4 ¥ o
B A A / e > O‘y/b.
g * ol g L
= P g ~ \’7/
é: s \47
: ~
wavelength i
|
13§
1 2. ¢
| ’—Ti
S
Data Cube =4
\ '5'
I
\'4
Y4
e
Image collapsed across N \}‘\
all wavelengths -
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ALMA datacube analysis

Goal: to detect all source candidates in each datacube

Method for datacube . Re-!)lnnlng of channels Fror:I. neighbor
analvsis Input Detection threshold in frequency (to peaks” in frequency,
y datacube S/N>3 remove noise and got peak with highest
detect signal peaks) S/N

QSO

(»

Noise

Others (serendipity)
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ALMA datacube analysis

Simulated datacubes (with Gaussian noise) Datacube With Gaussian noise only

250

provided to verify the method accuracy
6 2000
200
_3 2 7000 B
Llim? = 1.04 x 10 X S!iﬁfAU DL Vobs L@ - 6000
Carilli & Walter 2013 > S SR
100 4000
- 3000
Generation of source catalogue . o
] [ [] ] [] 5['
with: position, flux, S/N and luminosity (Lo, ) 1000
TARGET X Y FLUSSO S/N L (Lsov) Du 5|j 100 150 200 250 0 3.0 3.5 4.0 45 5.0 5.5 6.0
SN
QSO J0842-1218 167 197 0.025 8.4 1.4E+09
SDSS J092303.53+024739.5 194 46 0.003 6.1 4.7E+07 . . .
201 51 0018 11  3E+08 Datacube with Gaussian noise and sources
206 48 0.029 14 5.1E+08 —
QSO J1319+0950 122 140 0.003 6.1 6E+07 20 25000
137 129 0.011 9.4 2.3E+08
126 145 0.007 6.1 1.5E+08 15
SDSS J132853.66-022441.6 234 42 0.016 10 3.2E+08 20000
CFHQS J210054-171522 9 131 0.007 6.5 3.3E+08
9 134 0.035 6.6 1.6E+09 -
PJO65-26 123 126 0.038 6.2 1.6E+09 g 15000
PSO J167.6415-13.4960 121 122 0.021 7.8 4.7E+08 & %
PJ231-20 123 128 0.006 6.5 1.3E+08 =
124 111 0.048 12 1.1E+09 10000
J308-21 77 120 0.009 6 2E+08
127 136 0.014 8.5 2.8E+08 5
157 116 0.016 6.9 3.4E+08 3000
70 121 0.013 6.5 2.8E+08
[WMH2013] 5 129 127 0.007 6.8 1.4E+08
QSO J1509-1749 131 133 0.005 6.2 2E+08 o
QSO J1306+0356 121 126 0.022 8.1 5.5E+08
118 124 0.022 6.6 5.4E+08
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This work - Candidates

ALMA datacube analysis oo

Determination of Luminosity Density Function, by taking into account: = Popping+2016

v . L ==== Lagache+2017
Noise within ALMA datacubes B 1 Hayward,Behroozi+2013
v" For each source, total volume of datacubes in which the source is detectable V¥ Aravenat+2016
v’ Datacube volume (Mpc3), where 3 dimension is the frequency 10" 3 B Yamaguchi+2017
v" Amount of sources per Mpc3 over a certain luminosity ] ®  Hayatsu+2017
: A Swinbank+2013 - z=4.4

Comparison with literature 10! ’

v General agreement

v Higher luminosity depth (~ 1 order of growth)
v’ Larger data sample 10
v' Overestimate w.r.t. theoretical models (de Looze+2014)
v Overdensity of emitters [Cll] in QSO high-z fields

iy

L(II ) ( 1\1[7(. 3 )
/
_.._
«—o—

_ f1 103 > N v v
":\.\.
NEXT TASK: a . v
Alternative approach to detect candidates = '\""' ‘f__'_ ., A
with Deep Neural Networks (CNN+GAN) 10 N e,
- ., &
a2 S any f Y
AT WA \ RN
) WG: A. Marconi, M. Brescia, \ e, N
i<’ S. Carniani, G. Angora, G. Longo, R. Ragusa 105 —rrrr—————— e
' 107 108 10?
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Identification of CIuster Members (CM) from other source types. @

Cluster members |dent|f|cat|on

»
" -

HST ACS/WFC3 images, KB: spectro sources, assuming as CM a galaxy with separation from cluster < 3000 Km/s (rest fra{ne)

m1206 (0.4399)

m1149 (0.5422)

m0329 (0.4500)

12129 (0.2340)

mO0416 (0.3961)

"m2129 (0.5870)

12248 (0.3458)

m1115 (0.3520)

m1931 (0.3520)

Gritlo+ 201-5, Caminha+ 2016

i ?ch souse we extracted from HST images a squared thumbnall with a
S

ide o 33”‘centered on the source po?tlon

\

\ -

L -

Given the limited number of sources (about 100 CMs for each cluster), all
the experiments involve a data augmentation based on rotations and
flips.

This pre-process makes the network invariant to the performed

transformations.

In order to avoid the introduction of strong correlations within the
dataset, we constrain the pre-processing, by applying the transformation
to the 15% of the sample, implying an augmentation factor of 2.05.

* G. AngoragP. Rosati, M. Meneghetti, A. Mercurio, M. Brescia



Cluster members identification

.

* We approached the problem with Deep Learning: two Convolutional Neura*Networks (CNN) .. &

v .

VGGNET LIKE: VGGNET:#a canonical CNN,
based on a thain of
convolution + pooling layers
and .cross-entropy as cost
function

(40906)

(64,64,5)
OUTPUT

FLATTENING

RESNET: a _m.ow complex CNN,"
including " residual blocks, wi.e.
additional blocks implementing the
identity mapping* (adding origiﬁal
ingut to the output)® it helps to
build® more :complex networks, -
avoiding. thé known problem of
.”evanescing error gradient” :

(2048)

RESIDUAL BLOCK
RESIDUAL BLOCK
RESIDUAL BLOCK
RESIDUAL BLOCK
OUTPUT

=
o
O
fa¥
=
<L
M
(@]
=
(O]

(64,64,5)
CONV / BATCHNORM / MAXPOOL
CONV / BATCHNORM / MAXPOOL

.

3 -



2 PDE O 20 s d d 2Xpe -
o 0 0 0 o = o U
. (] () [} 0 (] () -
VGGNET | [1] | [2] | 3] | [4] | [5] | [6] | [7]
AE | 87.1 [ 90.5|90.9 | 89.5|90.1 |90.7 | 90.9
Pur | 86.8 [ 91.6 | 91.6 | 90.5 | 89.7 | 90.2 | 92.6
CM | Comp | 85.5 | 91.9 | 90.4 | 87.8 | 90.7 | 87.0 | 85.9 : s
F1 | 86.1|91.7|91.0|89.1|90.2 | 88.6 | 89.2
RESNET | [1] | [2] | [3] | [4] | [5] | [6] | [7]
AE | 91.8 |91.3/90.7 | 89.7 | 89.8 | 91.1 | 90.6
Pur | 91.7 | 93.0 | 89.7 | 85.4 | 84.5 | 88.0 | 85.7 S S
CM |Comp| 88.0 | 89.0 | 90.5 | 95.4 | 94.6 | 94.0 | 95.8
F1 | 89.8 |90.9|90.1|90.2 |89.7 |91.9|90.1

@ .
VGGNET Valid | Testl | Test2
AE 87.9 81.2 | 81.5
Pur 91.7 82.4 | 78.7
CM | Comp | 86.6 | 80.9 | 95.1
F1 89.1 | 81.2 | 86.2
RESNET Valid | Testl | Test2
AE 90.0 | 80.9 | 81.9
Sl Pur | 934 | 85.7 | 89.1
CM | Comp | 8.9 | 79.1 | 79.9
F1 89.9 82.4 | 84.2

oscoplia A



Outlier identification

How do we find outliers?

Supervised learning-based outlier detection will uncover the
outliers that “shout the strongest”.

ttroscopia INAF — Roma, 10-11 Giugno, 2019



Unsupervised Random Forest
Outlier detection on other
datasets using unsupervised RF?

The unsupervised Random Forest assumes a regular grid, and thus will work for
spectra or extracted features.

It will not work for images or time series, because it does not have translational and
rotational symmetry!

galaxy 1 galaxy 2
flux

@

possible solution: find a representation of the signal on a regular grid (e.g., FFT of time
series).
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Unsupervised RF

Random Forest can be used as an unsupervised algorithm, to produce pair-wise
similarity for the objects in our sample.

normalized flux

1 2| 3
For the problem of finding outliers we do not have a
training set. Instead we take our entire dataset - label it

as class "real", and generate a synthetic dataset of similar

wavelength (nm) wavelength (nm) wavelength (nm) size, and similar marginal distributions in all the features,
x ’ — | s but without covariance between the features
:5 4 galaxy .
(]
N | 12
\‘-_U 10
E ‘ 08
B 1 . I 1 [ T 1
c M“r‘— 5 120 - - 120 - -
wavelength (nm) wavelength (nm) 100 + 7 100 -~ 7
|
80 - - 80 . -
£ 60 - . £ 60 - .
40 - - 40 - -
20 - . . 20 - T
0 I I I I I I I I 1 - 0 I I I I I I I 1 -
10 20 30 40 50 60 70 80 9010 20 30 40 50 60 70 80 90 10
Feature 1 Feature 1
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Unsupervised RF

Training the RF on these sets teaches it to recognize objects that have covariance. Now, given two objects that we
pass through all the trees, we can ask how often they ended up in the same "real" terminal leaf.

Two completely identical objects will have the exact
Decision root same features and always end up together.

T . . Decision o
- Two very dissimilar objects will never do.

Tree

Therefore, counting how often two objects land in the
same leaf is a measure of similarity, or distance,

node which was our purpose. node

et The process is repeated for all onf @
AN the trees in the forest. \!
Therefore, the similarity
similarity += 1 ranges from 0 to N, the

number of trees in the forest. similarity +=0
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Dimensionality Reduction

Why do we need
dimensionality reduction?

S Y e
oy {209 +4435 D|mensuonall’fy Reduction
* “Practical”: Lo ensiatl 5%y ST
* Improve performance of supervised learning 2765 paisylovsab l
algorithms: original features can be correlated and AR LSl S el
redundant, most algorithms cannot handle thousands 28 x 28 features per object 2 features per object
of features. W :
« Compressing data (e.g., SKA). N Sgee.  EEST
o “Artistic”: 5 NS
* Data visualization and interpretation. 8 & Sl
e Uncover complex trends. - ,,Mﬁ%%
e | ook for “unknown unknowns”. L
feature 1 >
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Multi-dimensional data tS N E

visualization (tSNE)

Intuition: tSNE tries to find a low-dimensional embedding that preserves, as much as
possible, the distribution of distances between different objects.

perplexity: the neighborhood that
. tSNE considers in optimization

high-dimensional ®
(I
space: °
® o o '. @
oo o o
oo o o
°

distance in neighborhood

."III.|.
* *

low-dimensional . .
space:
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Example on APOGEE dataset

Colours points according tabulated parameters (e.g. SDSS)

M| p _ . APOGEE stars: infrared spectra of ~250K stars.

g ‘ Calculate Random Forest distance matrix —> Apply tSNE for dimensionality

§ reduction.

w See Reis+17. , :

2 Temperature Sequence :
,.«’: ‘ . 1

tSNE dimension #1 e ~ ] .

g A :g_:l e h e A (R ml_l_.llll._. Iﬁ.—'.'r".l-ll..“l.'.l..-l."...I"-'-Y-..l|-'.'l-.'-|"|"'|_|..-I--‘l|-"‘ll"l.1lll(lrﬂ-'-...-ll-l‘.....-_'\"p'-" ' S - -E

S E T -

g = Y

g -z

T

w

4

7

15200 15400 15600 15800 16000 1 6200 16400 16600 16800
Wavelength [A]

n

tSNE dimension #1 Workshop Laboratorio Spettroscopia INAF — Roma, 10-11 Giugno, 2019
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