Automatic analysis of optical AGN spectra

Giorgio Calderone¹

in collaboration with: Luciano Nicastro², Gabriele Ghisellini³, Massimo Dotti⁴, Tullia Sbarrato⁴, Francesco Shankar⁵, Monica Colpi⁴

¹ INAF – Osservatorio Astronomico di Trieste, ² INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica,

³ INAF – Osservatorio Astronomico di Brera, ⁴ Università degli studi di Milano–Bicocca, ⁵ University of Southampton (UK)

Giorgio Calderone (INAF-OATs)

QSFit: AGN spectral analysis

Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
 - M_i brighter than -22;
 - at least one line broader than 1000 km s⁻¹;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
 - Cont. luminosity λL_{λ} @ 5100Å, 3000Å and 1350/
 - FWHM of H β , Mg II and C IV (and other) lines

Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
 - M_i brighter than -22;
 - at least one line broader than 1000 km s⁻¹;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
 - Cont. luminosity λL_{λ} @ 5100Å, 3000Å and 1350/
 - FWHM of H β , Mg II and C IV (and other) lines

Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
 - M_i brighter than -22;
 - at least one line broader than 1000 km s⁻¹;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
 - Cont. luminosity λL_λ @ 5100Å, 3000Å and 1350Å
 - FWHM of H β , Mg II and C IV (and other) lines

Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
 - M_i brighter than -22;
 - at least one line broader than 1000 km s⁻¹;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
 - Cont. luminosity λL_λ @ 5100Å, 3000Å and 1350Å
 - FWHM of H β , Mg II and C IV (and other) lines

Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
 - M_i brighter than -22;
 - at least one line broader than 1000 km s⁻¹;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
 - Cont. luminosity λL_λ @ 5100Å, 3000Å and 1350Å
 - FWHM of H β , Mg II and C IV (and other) lines

• do not accounts for host galaxy contribution;

- do not accounts for Balmer continuum;
- the continuum is constrained locally, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;
- \rightarrow QSFit;

3

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained **locally**, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;
- \rightarrow QSFit;

э

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained locally, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;
- \rightarrow QSFit;

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained locally, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;
- \rightarrow QSFit;

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained **locally**, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;
- \rightarrow QSFit;

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained locally, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;
- \rightarrow QSFit;

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained locally, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;
- \rightarrow QSFit;

Giorgio Calderone (INAF-OATs)

QSFit: AGN spectral analysis

Monte Porzio Catone, Jum. 10th, 2019 3/1

• Analysis of new spectra ?

- Need a custom analysis (e.g. add a prior, add a specific em. line ? etc...)
- Huge new sample (e.g. SDSS–DR14Q or J–PAS) ?
- \rightarrow QSFit;

- Analysis of new spectra ?
- Need a custom analysis (e.g. add a prior, add a specific em. line ? etc...)
- Huge new sample (e.g. SDSS–DR14Q or J–PAS) ?
- \rightarrow QSFit;

- Analysis of new spectra ?
- Need a custom analysis (e.g. add a prior, add a specific em. line ? etc...)
- Huge new sample (e.g. SDSS-DR14Q or J-PAS) ?
- \rightarrow QSFit;

- Analysis of new spectra ?
- Need a custom analysis (e.g. add a prior, add a specific em. line ? etc...)
- Huge new sample (e.g. SDSS-DR14Q or J-PAS) ?
- \rightarrow QSFit;

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples;
- Goal: generate a catalog of spectral quantities.

analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
allow astronomers to study, test, modify and possibly improve the analysis recipes.

automatic spectral analysis of ~ 10² sources (SDSS DR7 Quasar catalog)

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples;
- Goal: generate a catalog of spectral quantities.

analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
allow astronomers to study, test, modify and possibly improve the analysis recipes.

automatic spectral analysis of ~ 10² sources (SDSS DR7 Quasar catalog)

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples;
- Goal: generate a catalog of spectral quantities.

The approach:

analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;

allow astronomers to study, test, modify and possibly improve the analysis recipes.

automatic spectral analysis of ~ 10² sources (SDSS DR7 Quasar catalog).

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples;
- Goal: generate a catalog of spectral quantities.

The approach:

- analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
- allow astronomers to study, test, modify and possibly improve the analysis recipes.

automatic spectral analysis of ~ 10⁵ sources (SDSS DR7 Quasar catalog).

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples;
- Goal: generate a catalog of spectral quantities.

The approach:

- analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
- allow astronomers to study, test, modify and possibly improve the analysis recipes.

The challenge:

• automatic spectral analysis of $\sim 10^5$ sources (SDSS DR7 Quasar catalog)

Image: A matrix

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples;
- Goal: generate a catalog of spectral quantities.

The approach:

- analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
- allow astronomers to study, test, modify and possibly improve the analysis recipes.

The challenge:

• automatic spectral analysis of $\sim 10^5$ sources (SDSS DR7 Quasar catalog)

Several model "components":

- non-thermal continuum
- emission line profile
- host galaxy
- Iron and Balmer templates

An environment programmatically to manipulate such components and their parameters:

- arbitrary combination;
- freeze/thaw parameters;
- link parameters (via a mathematical expression);

A non–linear minimizer

Several model "components":

- non-thermal continuum
- emission line profile
- host galaxy
- Iron and Balmer templates

2 An environment *programmatically* to manipulate such components and their parameters:

- arbitrary combination;
- freeze/thaw parameters;
- link parameters (via a mathematical expression);

A non–linear minimizer

Several model "components":

- non-thermal continuum
- emission line profile
- host galaxy
- Iron and Balmer templates

2 An environment *programmatically* to manipulate such components and their parameters:

- arbitrary combination;
- freeze/thaw parameters;
- link parameters (via a mathematical expression);

A non–linear minimizer

- Fit continuum (PL), host galaxy contribution and Balmer continuum and pseudo-continuum;
- 3 Subtract continuum offset: negative residuals: $50\% \rightarrow 10\%$;
- It iron templates (UV and optical);
- Fit "known" lines;
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
 - Galaxy template (elliptical): Polletta+2007
 - Balmer pseudo–continuum ($n >= 6 \rightarrow 2$, i.e. H ϵ , H ζ , etc.): Storey and Hummer 1995
 - Balmer recombination continuum: Grandi 1982, Dietrich+2002
 - Iron UV template: Vestergaard and Wilkes 2001
 - Iron optical template: Veron-Cetty+2004
 - Emission lines

- Fit continuum (PL), host galaxy contribution and Balmer continuum and pseudo-continuum;
- ② Subtract continuum offset: negative residuals: $50\% \rightarrow 10\%$;
- It iron templates (UV and optical);
- Fit "known" lines;
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
 - Galaxy template (elliptical): Polletta+2007
 - Balmer pseudo–continuum ($n >= 6 \rightarrow 2$, i.e. H ϵ , H ζ , etc.): Storey and Hummer 1995
 - Balmer recombination continuum: Grandi 1982, Dietrich+2002
 - Iron UV template: Vestergaard and Wilkes 2001
 - Iron optical template: Veron-Cetty+2004
 - Emission lines

- Fit continuum (PL), host galaxy contribution and Balmer continuum and pseudo-continuum;
- ② Subtract continuum offset: negative residuals: $50\% \rightarrow 10\%$;
- Fit iron templates (UV and optical);
- I Fit "known" lines;
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
 - Galaxy template (elliptical): Polletta+2007
 - Balmer pseudo–continuum ($n >= 6 \rightarrow 2$, i.e. H ϵ , H ζ , etc.): Storey and Hummer 1995
 - Balmer recombination continuum: Grandi 1982, Dietrich+2002
 - Iron UV template: Vestergaard and Wilkes 2001
 - Iron optical template: Veron-Cetty+2004
 - Emission lines

- Fit continuum (PL), host galaxy contribution and Balmer continuum and pseudo-continuum;
- ② Subtract continuum offset: negative residuals: $50\% \rightarrow 10\%$;
- Fit iron templates (UV and optical);
- Fit "known" lines;
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
 - Galaxy template (elliptical): Polletta+2007
 - Balmer pseudo–continuum ($n >= 6 \rightarrow 2$, i.e. H ϵ , H ζ , etc.): Storey and Hummer 1995
 - Balmer recombination continuum: Grandi 1982, Dietrich+2002
 - Iron UV template: Vestergaard and Wilkes 2001
 - Iron optical template: Veron-Cetty+2004
 - Emission lines

-	Line	WI [Å]	Туре	Line	WI [Å]	Туре
	Silv	1399.8	В	[0 11]	4960.295	N
	CIV	1549.48	В	[O III]	5008.240	N
	C III]	1908.734	В	Hei	5877.30	в
	Mgii	2799.117	В	[N II]	6549.86	N
× 1	[Ne vi]	3426.85	N	Hα	6564.61	В
\rightarrow	[O II]	3729.875	N			N
· ·	[Ne III]	3869.81	N	[N11]	6585.27	N
	Hδ	4102.89	В	[Si II]	6718.29	N
	$H\gamma$	4341.68	В	[Si II]	6732.67	N
	Hβ	4862.68	В			
			N			

- Fit continuum (PL), host galaxy contribution and Balmer continuum and pseudo-continuum;
- ② Subtract continuum offset: negative residuals: $50\% \rightarrow 10\%$;
- Fit iron templates (UV and optical);
- Fit "known" lines;
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
 - Galaxy template (elliptical): Polletta+2007
 - Balmer pseudo–continuum ($n >= 6 \rightarrow 2$, i.e. H ϵ , H ζ , etc.): Storey and Hummer 1995
 - Balmer recombination continuum: Grandi 1982, Dietrich+2002
 - Iron UV template: Vestergaard and Wilkes 2001
 - Iron optical template: Veron-Cetty+2004
 - Emission lines

-	Line	WI [Å]	Туре	Line	WI [Å]	Туре
-	Silv	1399.8	В	[0 11]	4960.295	N
	CIV	1549.48	В	[O III]	5008.240	N
	C III]	1908.734	В	Hei	5877.30	В
	Mgii	2799.117	В	[N11]	6549.86	N
× 1	[Ne vi]	3426.85	N	Hα	6564.61	В
\rightarrow	[O II]	3729.875	N			N
· ·	[Ne III]	3869.81	N	[N11]	6585.27	N
	Hδ	4102.89	В	[Si II]	6718.29	N
	$H\gamma$	4341.68	в	[SiII]	6732.67	N
	Hβ	4862.68	В			
			N			

- Fit continuum (PL), host galaxy contribution and Balmer continuum and pseudo-continuum;
- ② Subtract continuum offset: negative residuals: $50\% \rightarrow 10\%$;
- Fit iron templates (UV and optical);
- Fit "known" lines;
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
 - Galaxy template (elliptical): Polletta+2007
 - Balmer pseudo–continuum ($n >= 6 \rightarrow 2$, i.e. H ϵ , H ζ , etc.): Storey and Hummer 1995
 - Balmer recombination continuum: Grandi 1982, Dietrich+2002
 - Iron UV template: Vestergaard and Wilkes 2001
 - Iron optical template: Veron-Cetty+2004
 - Emission lines

-	Line	WI [Å]	Туре	Line	WI [Å]	Туре
-	Silv	1399.8	В	[0]	4960.295	N
	CIV	1549.48	в	[O III]	5008.240	N
	C III]	1908.734	В	Hei	5877.30	В
	Mgii	2799.117	В	[N11]	6549.86	N
× 1	[Ne vi]	3426.85	N	Hα	6564.61	В
\rightarrow	[O II]	3729.875	N			N
· ·	[Ne III]	3869.81	N	[N II]	6585.27	N
	Hδ	4102.89	в	[SiII]	6718.29	N
	$H\gamma$	4341.68	в	[SiII]	6732.67	N
	Ηġ	4862.68	В			
			N			

Example low-Z

Example low-Z

Example low-Z

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- 71,251 sources;
- QSFit input (SDSS data): \sim 18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): \sim 24 hours;
- Size of final catalog (S11 + QSFit): \sim 85 MB;
- $\chi^2_{\rm red} \sim$ 1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- 71,251 sources;
- QSFit input (SDSS data): \sim 18 GB;
- QSFit output (results, plots, log files): \sim 35 GB;
- Analysis time (12 simult. process INAF–Bologna): ~ 24 hours;
- Size of final catalog (S11 + QSFit): \sim 85 MB;
- $\chi^2_{\rm red} \sim$ 1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- 71,251 sources;
- QSFit input (SDSS data): \sim 18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): ~ 24 hours;
- Size of final catalog (S11 + QSFit): \sim 85 MB;
- $\chi^2_{\rm red} \sim$ 1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- 71,251 sources;
- QSFit input (SDSS data): \sim 18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): ~ 24 hours;
- Size of final catalog (S11 + QSFit):
 ~ 85 MB;
- $\chi^2_{\rm red} \sim$ 1.09 (median);
- Elapsed time \sim 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- 71,251 sources;
- QSFit input (SDSS data): \sim 18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): ~ 24 hours;
- Size of final catalog (S11 + QSFit):
 ~ 85 MB;
- $\chi^2_{\rm red} \sim$ 1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (\sim 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- 71,251 sources;
- QSFit input (SDSS data): \sim 18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): \sim 24 hours;
- Size of final catalog (S11 + QSFit):
 ~ 85 MB;
- $\chi^2_{\rm red} \sim$ 1.09 (median);
- Elapsed time ~ 7 s (single source, median);

The QSFit website: http://qsfit.inaf.it/

The QSFit website: http://qsfit.inaf.it/

QSFit: AGN spectral analysis

The QSFit catalog: results

Giorgio Calderone (INAF-OATs)

Monte Porzio Catone, Jum. 10th, 2019 13/18

The QSFit catalog: browse the spectrum

SDSS J004250.54+010205.9 [z = 0.5994]

Giorgio Calderone (INAF-OATs)

The QSFit catalog: browse the spectrum

Sky view & Catalogue selected fields

Associated files

- Statistical studies on AGN samples, e.g.:
 - trends of characteristic properties with redshift;
 - slopes of BAL vs. nonBAL sources (\Rightarrow C. Campbell, master thesis @ Univ. Southampton);
- Estimate importance of Balmer continuum in SEV mass estimates (⇒ Varisco+18, master thesis @ Univ. Milano–Bicocca);
- Comparison of different galaxy templates;
- Comparison of emission line models (Gaussian, Lorentzian, etc...);
- Quick analysis of new data (e.g. J–PAS: ~ 3 million new sources in 6 yr);
- Black hole mass estimates through AD modeling;
- etc..

- Statistical studies on AGN samples, e.g.:
 - trends of characteristic properties with redshift;
 - slopes of BAL vs. nonBAL sources (⇒ C. Campbell, master thesis @ Univ. Southampton);
- Estimate importance of Balmer continuum in SEV mass estimates (⇒ Varisco+18, master thesis @ Univ. Milano–Bicocca);
- Comparison of different galaxy templates;
- Comparison of emission line models (Gaussian, Lorentzian, etc...);
- Quick analysis of new data (e.g. J–PAS: ~ 3 million new sources in 6 yr);
- Black hole mass estimates through AD modeling;
- etc..

- Statistical studies on AGN samples, e.g.:
 - trends of characteristic properties with redshift;
 - slopes of BAL vs. nonBAL sources (\Rightarrow C. Campbell, master thesis @ Univ. Southampton);
- Estimate importance of Balmer continuum in SEV mass estimates (⇒ Varisco+18, master thesis @ Univ. Milano–Bicocca);
- Comparison of different galaxy templates;
- Comparison of emission line models (Gaussian, Lorentzian, etc...);
- Quick analysis of new data (e.g. J–PAS: ~ 3 million new sources in 6 yr);
- Black hole mass estimates through AD modeling;
- etc..

- Statistical studies on AGN samples, e.g.:
 - trends of characteristic properties with redshift;
 - slopes of BAL vs. nonBAL sources (\Rightarrow C. Campbell, master thesis @ Univ. Southampton);
- Estimate importance of Balmer continuum in SEV mass estimates (⇒ Varisco+18, master thesis @ Univ. Milano–Bicocca);
- Comparison of different galaxy templates;
- Comparison of emission line models (Gaussian, Lorentzian, etc...);
- Quick analysis of new data (e.g. J–PAS: ~ 3 million new sources in 6 yr);
- Black hole mass estimates through AD modeling;
- etc...

- Statistical studies on AGN samples, e.g.:
 - trends of characteristic properties with redshift;
 - slopes of BAL vs. nonBAL sources (\Rightarrow C. Campbell, master thesis @ Univ. Southampton);
- Estimate importance of Balmer continuum in SEV mass estimates (⇒ Varisco+18, master thesis @ Univ. Milano–Bicocca);
- Comparison of different galaxy templates;
- Comparison of emission line models (Gaussian, Lorentzian, etc...);
- Quick analysis of new data (e.g. J–PAS: ~ 3 million new sources in 6 yr);
- Black hole mass estimates through AD modeling;
- etc...

- Statistical studies on AGN samples, e.g.:
 - trends of characteristic properties with redshift;
 - slopes of BAL vs. nonBAL sources (\Rightarrow C. Campbell, master thesis @ Univ. Southampton);
- Estimate importance of Balmer continuum in SEV mass estimates (⇒ Varisco+18, master thesis @ Univ. Milano–Bicocca);
- Comparison of different galaxy templates;
- Comparison of emission line models (Gaussian, Lorentzian, etc...);
- Quick analysis of new data (e.g. J–PAS: ~ 3 million new sources in 6 yr);
- Black hole mass estimates through AD modeling;
- etc...

Version 1.2.4 (stable version)

• Used to generate the QSFit catalog

Version 1.2.4 (stable version)

Used to generate the QSFit catalog

Version 1.3.0 (development version)

- Fit of multiple spectra simultaneously;
- Added [OIII]5007 blue wing model component;
- Supports Lorentzian profiles;
- Supports absorption lines (guess wavelengths manually provided);
- Online calculator: http://qsfit.inaf.it/cat_1.30/onlinefit.php

Last version in IDL;

Version 1.2.4 (stable version)

Used to generate the QSFit catalog

Version 1.3.0 (development version)

- Fit of multiple spectra simultaneously;
- Added [OIII]5007 blue wing model component;
- Supports Lorentzian profiles;
- Supports absorption lines (guess wavelengths manually provided);
- Online calculator: http://qsfit.inaf.it/cat_1.30/onlinefit.php

Last version in IDL;
Version 1.2.4 (stable version)

Used to generate the QSFit catalog

Version 1.3.0 (development version)

- Fit of multiple spectra simultaneously;
- Added [OIII]5007 blue wing model component;
- Supports Lorentzian profiles;
- Supports absorption lines (guess wavelengths manually provided);
- Online calculator: http://qsfit.inaf.it/cat_1.30/onlinefit.php
- Last version in IDL;

Version 1.2.4 (stable version)

Used to generate the QSFit catalog

Version 1.3.0 (development version)

- Fit of multiple spectra simultaneously;
- Added [OIII]5007 blue wing model component;
- Supports Lorentzian profiles;
- Supports absorption lines (guess wavelengths manually provided);
- Online calculator: http://qsfit.inaf.it/cat_1.30/onlinefit.php
- Last version in IDL;

The near future: Calderone 2019 (...or 2020 ?)

- Analyze the DR14Q (up to z ~ 3) catalog (Pâris et al. 2018);
- Extend the analysis to z ~ 3 (consider absorptions up to Lyman edge);
- Abandon IDL! ⇒ complete open source implementation in Julia:

QSFit catalog creation guidelines

Easy reproducibility of results is a must!

- Released as free software (https://www.gnu.org/philosophy/free-sw.en.html)
- Resist the temptation to design an all-encompassing, or too general package;
- Identify a clear goal:
 - focus on "low" resolution ($R \lesssim 5,000$) of "low" redshift ($z \lesssim 2$) Type I AGN spectral analysis, customization and performances;

QSFit catalog creation guidelines

Easy reproducibility of results is a must!

- Released as free software (https://www.gnu.org/philosophy/free-sw.en.html)
- Resist the temptation to design an all-encompassing, or too general package;
- Identify a clear goal:
 - focus on "low" resolution ($R \lesssim 5,000$) of "low" redshift ($z \lesssim 2$) Type I AGN spectral analysis, customization and performances;

A difficult compromise:

- Avoid relying too much on individual software/language/library/standard: sooner or later it'll become a jail;
- Avoid re-inventing the wheel;

QSFit catalog creation guidelines

Easy reproducibility of results is a must!

- Released as free software (https://www.gnu.org/philosophy/free-sw.en.html)
- Resist the temptation to design an all-encompassing, or too general package;
- Identify a clear goal:
 - focus on "low" resolution ($R \lesssim 5,000$) of "low" redshift ($z \lesssim 2$) Type I AGN spectral analysis, customization and performances;

A difficult compromise:

- Avoid relying too much on individual software/language/library/standard: sooner or later it'll become a jail;
- Avoid re-inventing the wheel;

The *cooking* paradigm:

- Ingredients: small, well-defined functionalities which can be documented in less than~ 1 page, and implemented in a black box (i.e. a library);
- Recipes: brief solutions to a problem (even an ill-posed one) based on ingredients.
 - No need to be perfect: if you can do science with it, it is worth to be relased!

- QSFit allows simple, replicable and shareable standardized recipes for AGN spectral fitting;
- It is the only open source package currently available, allowing customized recipes;
- We applied the **QSFit** recipe to a sample of 71,251 sources with $z < 2 \Rightarrow$ **QSFit** catalog:
- Upcoming **QSFit** applications:
 - Automatic analysis of the DR14Q (up to z ~ 3) catalog (Pâris et al. 2018);
 - Automatic analysis of J–PAS low resolution spectra;

References:

- Paper: Calderone+17, MNRAS, 472, 4051 (http://adsabs.harvard.edu/abs/2017MNRAS.472.4051C)
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

is it relevant to the INAF spectroscopy laboratory?

- many functionalities have been implemented many times from scratch;
- attempt to identify SW development habits ensuring reproducibility and long term use;
- Basic take home messages:
 - Think (plan) before you code!
 - Keep It Simple and Short (KISS)

- Extract ingredients from recipes.
- Use/deploy free software

- QSFit allows simple, replicable and shareable standardized recipes for AGN spectral fitting;
- It is the only open source package currently available, allowing customized recipes;
- We applied the **QSFit** recipe to a sample of 71,251 sources with $z < 2 \Rightarrow$ **QSFit** catalog:
 - all results, plots and logs, are publicly released in a dedicated website;
- Upcoming QSFit applications:
 - Automatic analysis of the DR14Q (up to $z \sim$ 3) catalog (Pâris et al. 2018);
 - Automatic analysis of J–PAS low resolution spectra;

References:

- Paper: Calderone+17, MNRAS, 472, 4051 (http://adsabs.harvard.edu/abs/2017MNRAS.472.4051C)
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Is it relevant to the INAF spectroscopy laboratory?

- many functionalities have been implemented many times from scratch;
- attempt to identify SW development habits ensuring reproducibility and long term use;
- Basic take home messages:
 - Think (plan) before you code!
 - Keep It Simple and Short (KISS)

- Extract ingredients from recipes
- Use/deploy free software

- QSFit allows simple, replicable and shareable standardized recipes for AGN spectral fitting;
- It is the only open source package currently available, allowing customized recipes;
- We applied the **QSFit** recipe to a sample of 71,251 sources with $z < 2 \Rightarrow$ **QSFit** catalog:
 - all results, plots and logs, are publicly released in a dedicated website;
- Upcoming **QSFit** applications:
 - Automatic analysis of the DR14Q (up to z ~ 3) catalog (Pâris et al. 2018);
 - Automatic analysis of J-PAS low resolution spectra;

References:

- Paper: Calderone+17, MNRAS, 472, 4051 (http://adsabs.harvard.edu/abs/2017MNRAS.472.4051C)
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Is it relevant to the INAF spectroscopy laboratory?

- many functionalities have been implemented many times from scratch;
- attempt to identify SW development habits ensuring reproducibility and long term use;
- Basic take home messages:
 - Think (plan) before you code!
 - Keep It Simple and Short (KISS)

- Extract ingredients from recipes
- Use/deploy free software

- QSFit allows simple, replicable and shareable standardized recipes for AGN spectral fitting;
- It is the only open source package currently available, allowing customized recipes;
- We applied the **QSFit** recipe to a sample of 71,251 sources with $z < 2 \Rightarrow$ **QSFit** catalog:
 - all results, plots and logs, are publicly released in a dedicated website;
- Upcoming **QSFit** applications:
 - Automatic analysis of the DR14Q (up to z ~ 3) catalog (Pâris et al. 2018);
 - Automatic analysis of J–PAS low resolution spectra;

References:

- Paper: Calderone+17, MNRAS, 472, 4051 (http://adsabs.harvard.edu/abs/2017MNRAS.472.4051C)
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

is it relevant to the INAF spectroscopy laboratory?

- many functionalities have been implemented many times from scratch;
- attempt to identify SW development habits ensuring reproducibility and long term use;
- Basic take home messages:
 - Think (plan) before you code!
 - Keep It Simple and Short (KISS)

- Extract ingredients from recipes
- Use/deploy free software

- QSFit allows simple, replicable and shareable standardized recipes for AGN spectral fitting;
- It is the only open source package currently available, allowing customized recipes;
- We applied the **QSFit** recipe to a sample of 71,251 sources with $z < 2 \Rightarrow$ **QSFit** catalog:
 - all results, plots and logs, are publicly released in a dedicated website;
- Upcoming **QSFit** applications:
 - Automatic analysis of the DR14Q (up to z ~ 3) catalog (Pâris et al. 2018);
 - Automatic analysis of J–PAS low resolution spectra;

References:

- Paper: Calderone+17, MNRAS, 472, 4051 (http://adsabs.harvard.edu/abs/2017MNRAS.472.4051C)
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Is it relevant to the INAF spectroscopy laboratory?

- many functionalities have been implemented many times from scratch;
- attempt to identify SW development habits ensuring reproducibility and long term use;
- Basic take home messages:
 - Think (plan) before you code!
 - Keep It Simple and Short (KISS)

- Extract ingredients from recipes
- Use/deploy free software