Continuous-wave lidar method - line of sight sodium profiles during LGS-AO operation

J. Hellemeier, D. Bonaccini Calia, P. Hickson
The overall scope of the work of this ongoing research is to see if the need of NGS focus sensing can be removed in LGS-AO.

The method yields line-of-sight LGS sodium density profiles. allows sodium density structure statistics while telescope is in operation

The sodium profiles could be used as input for matching filter algorithms.
Sodium layer variability

- sodium in the layer originates from ablation of meteorites
- layer shows temporal and spatial evolution
- layer density structure is affected by Kelvin-Helmholtz instabilities, gravity waves, sporadic sodium layers and meteor trails

figures:
Pfrommer et al. (2009)
Induced wavefront error

- sodium centroid changes induce focus wavefront error
- wavefront error is proportional to telescope diameter squared

\[\sigma_{wfe} = \frac{1}{16\sqrt{3}} \frac{D^2}{h^2} \Delta h \]
- for the ELT 1 m of centroid change induces a wavefront error of 7 nm

figure & formula: Herriot et al. (2006)
CW lidar method

- partial-amplitude modulation of cw laser
- cross-correlating LGS return flux with random sequence used for modulation
- for partial amplitude modulation a device like an AOM could be used (MHz-scale)
CW lidar method

In AO system leakage light from mirrors or beam splitter (approx. 3 %) could be used
Analysis & simulations

- analytical calculation of centroid error for photon-noise limited case

\[\sigma_z \approx \frac{\sqrt{2 - \epsilon}}{\epsilon} \sqrt{\frac{n}{6N_0}} Z \]

<table>
<thead>
<tr>
<th>parameter</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>modulation strength</td>
</tr>
<tr>
<td>(N_0)</td>
<td>total number of photons at (\epsilon = 0)</td>
</tr>
<tr>
<td>(n)</td>
<td>number of samples</td>
</tr>
<tr>
<td>(Z)</td>
<td>altitude range of layer</td>
</tr>
</tbody>
</table>
Performance on ELTs

- simulations carried out for different profile shapes and integration times for ELTs
- analytically-predicted centroid error and simulations agree well

<table>
<thead>
<tr>
<th>input parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGS magnitude</td>
<td>7.0</td>
</tr>
<tr>
<td>flux at primary mirror</td>
<td>15.8 Mph/m²/s</td>
</tr>
<tr>
<td>telescope throughput</td>
<td>0.3</td>
</tr>
<tr>
<td>fraction of leakage light</td>
<td>0.03</td>
</tr>
</tbody>
</table>

results shown in figure for ELT
Performance on ELTs

Wavefront sensing in the VLT/ELT era, 4th edition, Firenze 28th-30th Oct 2019
Conclusions

- retrieving profiles inducing wavefront errors < 50 nm on timescales of some seconds is possible for ELTs
- different scenarios (< 50 nm): 1 LGS, 0.6 modulation → 30% less LGS flux
 6 LGS, 0.3 modulation → 15% less LGS flux
- future scenario (< 20 nm): 6 LGS, 2.5 x return flux, 2 seconds integration, 0.6 modulation → 30% less LGS flux
- profiles could be used as input for matched-filter algorithms, quantitative study of performance needed
- retrieving profiles of high accuracy on sub-second timescales seems difficult, is sub-second timescale needed? more work is ongoing
Thank you for your attention!