

The Phasing and Diagnostic Station in the ELT

29th October 2019 WFS in the VLT/ELT era, 4th edition in Florence

T.Pfrommer (on behalf of the PDS team)

Phasing and Diagnostic Station – Introduction

User Requirements

Architectural Study

Concept Design

Location and Design Volume

PDS in PD phase

Schedule

Conclusion

+ES+ 0 +

PDS Introduction

Use Cases

- Wavefront Control Commissioning (AIV)
- Characterisation/Verification by Test
 - Level 1 Requirements
 - Instrument <-> CCS Interfaces
- Regular Phasing of Primary Mirror During Operation
- Diagnostics and Troubleshooting During Operation
- Recommissioning after Maintenance

Key Stakeholders

- > AIV Manager/Telescope Scientist/Wavefront Control Architect
- Programme and Systems Engineering
- Programme Scientist
- Head of Paranal Engineering and ELT Science Ops

PDS User requirements

10" M1 segm. capture - 10 cm ZEUS VIS img. 1'FoV **Pupil Plane** IR diffr.-limt. img. 7" Near Infrared > SH phasing >3" Pyramid SCAO > Zernike phase contr M1 phasing > SH phasing **Image Plane NIR Imager** 5" > Zernike phase contr (5mas) Visitor SCAO SH sensor place SCAO AO (high Strehl) > Pyramid WFS 3" / IR diffr.-limt. imag 7"

PDS User requirements

Characterization

- Seeing Limited Perf., Pointing, Offsetting, Nodding
 - Visible Imager, Low Order SH Wavefront Sensor
- Active Optics (LOO)
 - Visible Imager and Low Order SH Wavefront Sensor
- > SCAO/M4/M5
 - Pyramid WFS and Infra-Red Imager
- Instrument CCS Interfaces
 - Specific features in CCS/PDS control
- Visitor Optical Port for Risk Mitigation
- PDS will also receive inputs/feedback from MELT test bench

PDS Architectural Study

Three candidate architectures

- > Wavelength-oriented
- Instrument-oriented
- WFS-oriented

Quite similar (strongly driven by user requirements)

Evaluated and compared based on defined criteria

- Technical complexity
- Integration/assembly/Calibration
- Reliability/robustness in operation
- Performance optimization performance requirements)
- Cost/schedule

PDS Concept Architecture

Instrument oriented architecture selected

Modularity / clear interfaces / ease of integration/test

PDS Concept Architecture

- On-axis system, one NGS for all or some sensors
- I' FoV only for VIS Aqu/guide Cam (mechanical derotation, no ADC), rest 10"
- Pupil control (common derotation for all sensors)
 - M1 derotation for SHAPS/ZEUS
 - M4 derotation for SH/PYR SCAO
 - M1 position for SHAPS (ZEUS)
 - M4 position for PYR (SH SCAO)
- IR imager and PYR close to reduce NCPA
- Calibration unit, common for all sensors

PDS Block diagram

PDS Concept Design

Location and Design Volume

Location and Access

12

PDS Preliminary Design is NOW

System Technical Requirements Specification

- **Performance Analysis**
 - SHphasing and Zernike phase contrast studied in detail
 - Signal needed to extract phasing information
 - Sensitivity Analysis of optomechanics
 - Realistic telescope beam with tolerances
- Input for optomechanical design
- SH experience on-sky (community and inside ESO)

+ES+

PDS Preliminary Design is NOW

- Iterative phase with optics/mechanics/AIV/SysEng
- Detector control system structure definition
- Overall control system definition
- Design driver
 - Robust, simple
 - > From Architecture study:
 - Schedule-Cost / Maintainability-Integratability important
 - Not performance driven
 - We will meet required needs, and that's enough
 - > No Science, not photon starved

+ES+ 0 +

PDS Preliminary Design is NOW

PDS Preliminary Design is NOW

16

PDS Project phases and Timing

- 09/2019 Kick-off preliminary design phase (1 year)
 - > 07/2020 end of design, start of documentation
 - > 09/2020 review process, early 10/2020 PDR
- 10/2020 Final design phase (1 year)
 08/2021 end of design, start of documentation
 10/2021 review process, end 10/2021 FDR
- 11/2021-11/2024 MAIT (3 years) space in LIH
 - > 1 year procurement/manufacturing
 - > 1 year subsystem assembly and test
 - > 1 year system assembly and test

Shipment 12/2024

WFS4 Florence, 29.10.19, public

Conclusion

PDS supports wavefront commissioning, system verification, diagnostics/troubleshooting during regular operations, recommissioning after maintenance

- PDS is THE tool that will bring the ELT to the diffraction limit for the first time
- We have a baseline "instrument-oriented" architecture for the ELT Phasing and Diagnostic Station
- The architecture will be developed to preliminary design level in the next project phase
- PDS system responsibility in-house at ESO. Make/buy decisions on subsystems on a case-by-case basis.

WFS4 Florence, 29.10.19, public

