

SHARK-NIR, a status update

Luca Marafatto on behalf of SHARK-NIR team

Wavefront sensing in the VLT/ELT era, 4th edition, June 18 2019

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

PAG

ratitut de Planétoloo

WHAT IS SHARK-NIR?

.

- Camera for high-contrast imaging and spectroscopy in the NIR, mainly dedicated to detection and characterization of exoplanets
- Observing modes:
 - Classical Imaging
 - Coronagraphic imaging
 - Long Slit spectroscopy
 - Dual Band Imaging

WHAT IS SHARK-NIR?

- Camera for high-contrast imaging and spectroscopy in the NIR, mainly dedicated to detection and characterization of exoplanets
- Observing modes:
 - Classical Imaging
 - Coronagraphic imaging
 - Long Slit spectroscopy
 - ➢ Dual Band Imaging

WHAT IS SHARK-NIR?

- Camera for high-contrast imaging and spectroscopy in the NIR, mainly dedicated to detection and characterization of exoplanets
- Observing modes:
 - Classical Imaging
 - Coronagraphic imaging
 - Long Slit spectroscopy
 - Dual Band Imaging
- Synergy with other LBT instruments (SHARK-VIS, LMIRCAM)

SHARK-NIR main characteristics				
Observing Modes	Imaging/Coronagraphy/Spectroscopy/DBI			
Detector format [px]	2048x2048 (≈1220x1220 used area)			
Waveband [µm]	0.96 – 1.7			
FoV ["]	18 x 18			
FoV along the diagonal ["]	25.5			
Plate scale [mas/px]	14.5			
Airy Radius @ 0.96 micron [px]	2			
Nominal Strehl at <18" FoV diameter (in all Bands)	>98%			

SPECTROSCOPIC MODE

DUAL BAND IMAGING MODE

How do we obtain high contrast in the vicinity of such bright stars?

High contrast

A deformable mirror to correct for instrumental aberrations and to stabilize the PSF

WFS Camera

- InGaAs camera (C-RED2)
- Sensitive in the full SHARK-NIR waveband (0.96-1.7 μm)
- Frame-rate up to **14 kHz** (with 32X32 px window)
- Low RON (<30 e⁻)
- 3-5 mas precision up @ 1KHz

Deformable Mirror

- ALPAO DM 97-15
- 97 actuators, 13.5 mm pupil, up to 2 kHz speed
- NCPA can be corrected internally without affecting pyramid's performance
- NCPA measured with phase versity on science image

CORONAGRAPHS

15

Coronagraphic masks characterization, performance analisys, alignment procedure

.

Coronagraphic mask technique	IWA [µm]		OWA [µm]	
	theoretical	measured	theoretical	measured
SP1_ <u>FPM_</u> H	196	198	528	521
SP2a_ <u>FPM_</u> H	262	266	528	521
SP2b_ <u>FPM_</u> H	247	250	528	521

.

FP w/o Lyot Stop

Pupil plane

4QPM centering procedure

CLEAN ROOM - ON-GOING ACTIVITIES

Alignment beams (collimated laser beam for refractive optics alignment, converging beam for OAPs alignment) available.

Rough mechanical mirrors pre-alignment completed.

SCIENTIFIC CAMERA

Infinite shipping issues

- 2.5 Days of camera at 81 K (Padova is at sea level):
- Functional tests performed
- Cooling down, warming up procedure tested
- Cryostat can hold 52 hours in worst configuration
- VPN setup in order to allow remote connection from Steward to debug SW issues

NEXT STEPS

- 2019 Nov.? Delivery of the NIR camera sub-assembly from SO to INAF
- 2019 Dec. Delivery of dispersive element
- 2020 May End of AIV phase
- 2020 Jun. PAE review
- 2020 Mid Start of commissioning at LBT
- 2020 Fall SHARK-NIR in operation

Thank you for your attention!