

# Robust wavefront sensing in harsh turbulence conditions

Michel Tallon<sup>1</sup>, Eric Thiébaut<sup>1</sup>, Maud Langlois<sup>1</sup>, Bernard Gelly<sup>2</sup>, Richard Douet<sup>2</sup>, Clémentine Béchet<sup>3</sup>, Loïc Denis<sup>4</sup>

<sup>1</sup> CRAL, Lyon France

<sup>2</sup> THEMIS, La Laguna, Canary Islands

<sup>3</sup> Pontificia Universidad Catolica de Chile

<sup>4</sup> Laboratoire Hubert Curien, Saint-Etienne, France



#### **Outline**

- Robust WFS → extract slopes and covariance of slopes in real time
- Contents
  - Why? / context
  - How ? / recipes
    - errors on pixel values
    - errors on slope measurements
  - Real-time slope covariances & control algorithm
  - Conclusion



Shack-Hartmann wavefront sensor at the telescope

#### **Context / data from Themis Solar telescope**



- 76 subapertures (10x10)
- 97 actuators (11x11, ALPAO)
- 1 kHz

- Constraints
  - low cost
  - AO runs unsupervised
- Opportunity to implement new methods of reconstruction and control
  - RTC = standard PC + suitable software
  - Do the best we can do



- Ø 90 cm Solar telescope
- Tenerife, Canaria Islands
- Altitude 2400m





#### Context / harsh conditions ...

- AO in the visible
- Day time (median  $r_0$ : 4.6 cm)
- Sensing on granulation ~ 2% contrast
- Fast spatial and temporal variations in the pupil
- structures in the sub-images
  - => accuracy not isotropic
  - similar to laser guide star elongation
  - structures change at the minute scale
- Field-of-view 10" / 30 pix
- here: 100 frames @ 1 kHz





#### Context / harsh conditions ...

- AO runs unsupervised
  - => "robustness"
- key point: get the AO system informed
  - errors on the WFS measurements

- Field-of-view 10" / 30 pix
- here: 100 frames @ 1 kHz



## **Context / recipe**

- Focus on robustness
  - promptly adapt to varying conditions
  - unsupervised + best for any conditions => auto-calibration
  - adapt to evolutions in the system
    - interaction matrix (differential pointing)
    - decentering of the pupil (derotator)

#### Recipe

- estimate the errors on the pixel values
- estimate the errors (and their covariance) on slopes
- take them into account in the computation of the commands.
- Presentation focused on wavefront sensing.



# **Detector preprocessing / pixel values**



#### Model (fixed exposure time)

$$r_i = \frac{t_i \phi_i}{g_i} + b_i + n_i$$
•  $r_i$  raw pixel  $i$  [ADU]
•  $t_i$  total transmitance [e<sup>-</sup>/ph]
•  $t_i$  bias [ADU]
•  $t_i$  noise [ADU]

- $\phi_i$  photons

- $n_i$  noise [ADU]

#### 3 types of calibration set of frames

- dark:  $\phi_i = 0$

- flat:  $E(\phi_i) = E(\phi^{flat})$
- static:  $Var(t_i \phi_i) = E(t_i \phi_i)$

no incident flux

same average flux on all the pixels

constant flux on each pixel

#### Calibrated pixel values

$$d_i = \alpha_i(r_i - \beta_i)$$

$$\mathbb{E}(d_i) = \mathbb{E}(\phi_i)/\mathbb{E}(\phi^{\mathsf{flat}})$$

$$\beta_i = \mathbb{E}(r_i^{\mathsf{dark}})$$

$$\Rightarrow \qquad \alpha_i = \frac{1}{\mathbb{E}(r_i^{\mathsf{flat}}) - \mathbb{E}(r_i^{\mathsf{dark}})}$$

$$x_i = \frac{1}{\mathbb{E}(r_i^{\mathsf{flat}}) - \mathbb{E}(r_i^{\mathsf{dark}})}$$



## **Detector preprocessing / error on pixel values**



Model (fixed exposure time)

$$r_i = \frac{t_i \phi_i}{g_i} + b_i + n_i$$
•  $r_i$  raw pixel  $i$  [ADU]
•  $t_i$  total transmitance [e<sup>-</sup>/ph]
•  $t_i$  bias [ADU]
•  $t_i$  noise [ADU]

- $\phi_i$  photons

- $n_i$  noise [ADU]

- 3 types of calibration set of frames
  - dark:  $\phi_i = 0$

- static:  $Var(t_i \phi_i) = E(t_i \phi_i)$

no incident flux

- flat:  $E(\phi_i) = E(\phi^{flat})$  same average flux on all the pixels

constant flux on each pixel

Error on pixel values

$$\operatorname{Var}(d_i) \approx \frac{\max(d_i, 0) + v_i}{u_i} \quad \Longrightarrow \quad v_i = g_i \frac{\operatorname{Var}(r_i^{\mathsf{dark}})}{\mathbb{E}(r_i^{\mathsf{flat}}) - \mathbb{E}(r_i^{\mathsf{dark}})}$$

$$u_i = g_i \left( \mathbb{E}(r_i^{\mathsf{flat}}) - \mathbb{E}(r_i^{\mathsf{dark}}) \right)$$

$$v_i = g_i \frac{\text{Var}(r_i^{\text{dark}})}{\mathbb{E}(r_i^{\text{flat}}) - \mathbb{E}(r_i^{\text{dark}})}$$

$$g_i = \frac{\mathbb{E}(r_i^{\text{stat}}) - \mathbb{E}(r_i^{\text{dark}})}{\text{Var}(r_i^{\text{stat}}) - \text{Var}(r_i^{\text{dark}})}$$



# Slopes with their covariances / Ingredients



Cost function (from maximum likelihood)

$$\psi(\boldsymbol{\theta}) = \sum_{k=1}^{n} \left\{ \eta_k \|\boldsymbol{d}_k - \alpha_k \mathbf{R}_k(\boldsymbol{s}_k) \cdot \boldsymbol{r}\|_{\mathbf{W}_k}^2 - m_k \log \eta_k \right\} + \mu \|\mathbf{D} \cdot \boldsymbol{r}\|_2^2$$

- Fit the reference image (model), shifted and rescaled on sub-images
  - Use the weights on the pixels: **W**<sub>\(\nu\)</sub>
- At the same time:
  - Rescales the weights (model is not perfect):  $\eta_k$
  - Get the best reference image: r
  - $\mu ||\mathbf{D}.\mathbf{r}||_{2}^{2}$ Smooth (extrapolated) reference image:

- $d_k$  pixels of subap k
- reference image
- $\mathbf{R}_{k}$  shifting operator
- slopes •  $S_k$
- rescaling (scintillation)
- $\mathbf{W}_{k}$  weights on pixels
- rescaling of weights
- number of pixels  $m_{\nu}$
- finite difference operator • D
- weight on smoothing





Cost function (from maximum likelihood)

$$\psi(\boldsymbol{\theta}) = \sum_{k=1}^{n} \left\{ \eta_k \|\boldsymbol{d}_k - \alpha_k \mathbf{R}_k(\boldsymbol{s}_k).\boldsymbol{r}\|_{\mathbf{W}_k}^2 - m_k \log \eta_k \right\} + \mu \|\mathbf{D}.\boldsymbol{r}\|_2^2$$

- Linearization (Thiébaut et al 2018)
  - ≈ matched filter
  - Each sub-aperture k independently

$$||\boldsymbol{d}_{k} - \alpha_{k} \mathbf{R}_{k}(\boldsymbol{s}_{k}).\boldsymbol{r}||_{\mathbf{W}_{k}}^{2}$$

$$\varphi_{k}(\boldsymbol{u}_{k}) = ||\boldsymbol{d}_{k} - \mathbf{H}_{k}.\boldsymbol{u}_{k}||_{\mathbf{W}_{k}}^{2} = \gamma_{k} - 2 \boldsymbol{b}_{k}^{\mathsf{T}} \boldsymbol{u}_{k} + \boldsymbol{u}_{k}^{\mathsf{T}} \mathbf{A}_{k}.\boldsymbol{u}_{k},$$

with 
$$\boldsymbol{u}_k = \alpha_k \begin{pmatrix} 1 \\ x_k \\ y_k \end{pmatrix}$$

with 
$$\mathbf{u}_k = \alpha_k \begin{pmatrix} 1 \\ x_k \\ y_k \end{pmatrix}$$
 
$$\begin{bmatrix} \mathbf{y}_k = \|\mathbf{d}_k\|_{\mathbf{W}_k}^2 \\ \mathbf{b}_k = \mathbf{H}_k^{\mathrm{T}} \cdot \mathbf{W}_k \cdot \mathbf{d}_k \\ \mathbf{A}_k = \mathbf{H}_k^{\mathrm{T}} \cdot \mathbf{W}_k \cdot \mathbf{H}_k \end{bmatrix}$$

- $d_k$  pixels of subap k
- *r* reference image
- $\mathbf{R}_{k}$  shifting operator
- slopes •  $S_k$
- rescaling (scintillation)
- $\mathbf{W}_{k}$  weights on pixels
- rescaling of weights
- number of pixels  $m_{k}$
- finite difference operator • D
- weight on smoothing





J.C.

Cost function (from maximum likelihood)

$$\psi(\boldsymbol{\theta}) = \sum_{k=1}^{n} \left\{ \eta_k \left( ||\boldsymbol{d}_k - \alpha_k \, \mathbf{R}_k(\boldsymbol{s}_k).\boldsymbol{r}||_{\mathbf{W}_k}^2 - m_k \, \log \eta_k \right) + \mu \, ||\mathbf{D}.\boldsymbol{r}||_2^2 \right\}$$
$$= \varphi_k(\widehat{\boldsymbol{u}}_k)$$

#### · Rescaling of weights

- Inform on discrepancy between data and reference image

$$\eta_k = \frac{m_k}{\varphi_k(\widehat{\boldsymbol{u}}_k)}$$

- $d_k$  pixels of subap k
- *r* reference image
- $\mathbf{R}_k$  shifting operator
- $s_k$  slopes
- $\alpha_k$  rescaling (scintillation)
- $\mathbf{W}_k$  weights on pixels
- $\eta_k$  rescaling of weights
- $m_k$  number of pixels
- **D** finite difference operator
- $\mu$  weight on smoothing





Cost function (from maximum likelihood)

$$\psi(\boldsymbol{\theta}) = \sum_{k=1}^{n} \left\{ \eta_k ||\boldsymbol{d}_k - \alpha_k \mathbf{R}_k(\boldsymbol{s}_k).\boldsymbol{r}||_{\mathbf{W}_k}^2 - m_k \log \eta_k \right\} + \mu ||\mathbf{D}.\boldsymbol{r}||_2^2$$

• Covariance matrix of slopes  $(\alpha_k, x_k, y_k)$ 

$$\mathbf{C}_k = \frac{1}{n_k} \mathbf{J}_k^{\mathrm{T}} \cdot \mathbf{A}_k^{-1} \cdot \mathbf{J}_k$$
 for each subaperture  $k$ 

- $\mathbf{J}_k$ : jacobian of non-linear relationship between  $\mathbf{u}_k$  and  $(\alpha_k, x_k, y_k)$
- => send to controller now

- $d_k$  pixels of subap k
- *r* reference image
- $\mathbf{R}_k$  shifting operator
- $s_k$  slopes
- $\alpha_k$  rescaling (scintillation)
- $\mathbf{W}_k$  weights on pixels
- $\eta_k$  rescaling of weights
- $m_k$  number of pixels
- **D** finite difference operator
- $\mu$  weight on smoothing





Cost function (from maximum likelihood)

$$\psi(\boldsymbol{\theta}) = \sum_{k=1}^{n} \left\{ \eta_k \| \boldsymbol{d}_k - \alpha_k \, \mathbf{R}_k(\boldsymbol{s}_k) \cdot \boldsymbol{r} \|_{\mathbf{W}_k}^2 - m_k \log \eta_k \right\} + \mu \| \mathbf{D} \cdot \boldsymbol{r} \|_2^2$$

• Get / update the reference image 
$$\psi'(\theta) = \sum_{k=1}^{n} ||\boldsymbol{d}_k - \mathbf{G}_k.\boldsymbol{r}||_{\eta_k \mathbf{W}_k}^2 + \mu \, ||\mathbf{D}.\boldsymbol{r}||_2^2$$

Solution obtained by conjugate gradient method with :

$$\left(\sum_{k=1}^{n} \eta_k \mathbf{G}_k^{\mathrm{T}} \mathbf{W}_k . \mathbf{G}_k + \mu \mathbf{D}^{\mathrm{T}} . \mathbf{D}\right) \mathbf{r} = \sum_{k=1}^{n} \eta_k \mathbf{G}_k^{\mathrm{T}} . \mathbf{W}_k . \mathbf{d}_k$$
weighted sum of recentered sub-images

- $d_k$  pixels of subap k
- reference image
- shifting operator
- slopes •  $S_k$
- rescaling (scintillation)
- $\mathbf{W}_{k}$  weights on pixels
- rescaling of weights
- number of pixels
- finite difference operator
- weight on smoothing  $\mu$

 $\rightarrow$  r used for updating reference frame for next frame

# CRAL CENTRE DE RECIERCIE ASTROPHYSIQUE DE LYON

# Results on open-loop data



- crosses =  $X_k$ ,  $Y_k$
- ellipse radii = 1  $\sigma$
- center = reference image

#### comments

- $-x_k$  more accurate than  $y_k$
- errors larger in subapertures on the edge
- reference image gets known outside the FoV

- Field-of-view 10" / 30 pix
- here: 100 frames @ 1 kHz

# CRAL) CENTRE DE RECIERO E ASTROPHYSQUE DE LYON

#### Results on open-loop data

- crosses =  $X_k$ ,  $Y_k$
- ellipse radii = 1  $\sigma$
- center = reference image

#### comments

- best accuracy now along the first diagonal
- errors larger in subapertures on the edge
- reference image gets known outside the FoV

- Field-of-view 10" / 30 pix
- here: 100 frames @ 1 kHz



#### Real-time slope covariances → controller

- Usual way to get the commands from the slopes
  - model of the system: interaction matrix

slopes 
$$s = \mathbf{M} \cdot \mathbf{a} + \mathbf{e}$$

- look for: 
$$\widehat{a} = \underset{a}{\arg\min} \|s - \mathbf{M}.a\|_{\mathbf{C}_e^{-1}}^2$$

$$\Rightarrow \widehat{a} = \left(\mathbf{M}^{\mathrm{T}}.\mathbf{C}_e^{-1}.\mathbf{M}\right)^{\dagger}.\mathbf{M}^{\mathrm{T}}.\mathbf{C}_e^{-1}.s \Rightarrow \text{need to (pseudo) invert } \left(\mathbf{M}^{\mathrm{T}}.\mathbf{C}_e^{-1}.\mathbf{M}\right)$$
at each frame

• Instead: iterative method (conjugate gradient, e.g. Fractal Iterative Method)

$$\left(\mathbf{M}^{\mathrm{T}}.\mathbf{C}_{e}^{-1}.\mathbf{M} + \mu \ \mathbf{C}_{a}^{-1}\right) \widehat{a} = \mathbf{M}^{\mathrm{T}}.\mathbf{C}_{e}^{-1}.s$$



#### **Conclusions**

- Errors on pixel values → covariance of slope errors → iterative reconstructor
  - on-going work…
- Can be used with laser guide star elongation
  - actual covariances instead of modeled ones
  - actual (evolving, truncated) Sodium profile
  - Sodium profile extrapolated (i.e. known outside the truncated field-of-view)
- Other example in CANARY data:

