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CONTEXT

Focal plane wavefront sensing:

­ Particular interest for coronography: 
measuring aberrations where it matters most

­ Optically simple (but computationally 
challenging)

­ Focal plane intensity <-> pupil complex 
amplitude: non-linear and degenerate
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Figure 6
Key components of an ExAO system. Light travels from left to right. Fine dashed boxes and arrows indicate
optional components. ExAO systems include WFS(s) (blue boxes) and wavefront corrector(s) (red boxes).
Green arrows indicate control signals from sensors to WFCs. Abbreviations: DM, deformable mirror;
LOWFS, low-order wavefront sensor; WFC, wavefront corrector; WFS, wavefront sensor.

low-order wavefront sensor (LOWFS) aimed at maintaining the coronagraph alignment
by monitoring rejected starlight. A postcoronagraphic WFS may also be deployed to mea-
sure residual starlight at the output of the system and issue commands to actively cancel this
term. Secondary wavefront sensing loops are discussed in Section 8.

CLOSED- AND OPEN-LOOP ARCHITECTURES

Closed-Loop

Most AO systems adopt a closed-loop architecture where the WFS is located downstream of the DM: The WFS
measures residual optical aberrations and the corresponding corrections should be added to the current DM shape.
Wavefront sensing in a closed-loop system operates near the flat wavefront state: The system is constantly driving
down wavefront errors seen by the WFS toward zero. The closed-loop architecture eases WFS calibration, which
is only required around the operating (flat) wavefront state. Small calibration errors in the DM response also have
little effect on AO performance, as successive iterations drive the DM to the correct state.

Open-Loop

The alternative open-loop architecture, not discussed in this paper, has the WFS located upstream of the DM
and measures the entire atmospheric turbulence. In an open-loop system, the WFS must measure large wavefront
aberrations with high precision, and the DM must be well calibrated as the system is blind to DM calibration errors.
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FOCAL PLANE WFS CHALLENGES

Twin image problem:
h(x), h(-x)*  have the same |ℱ {.}|
Ø sign ambiguity of Zernike even mode

Capture range problem (likelihood of stagnating in local minima)
probability decreases as ~ 1 / Rn+1

R ∝ RMS WFE
n ∝ number of coefficients

ØWhat can Convolutional Neural Network do for us? 

ØAnd is it a promising avenue for high-contrast imaging?
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Figure 5
Wavefront maps (top) and corresponding point spread functions (bottom) in monochromatic light. A single pupil plane sine wave
aberration in phase creates a pair of focal plane speckles. Changing the phase of the sine wave aberration (180-deg change between
panels a and b) has little effect on the focal plane intensity image: Speckles change phase but their amplitude and location are left unchanged.
Upon close inspection of the two focal plane images, a small difference due to coherent interference between the speckles and the Airy
diffraction rings can be seen, resulting in a small difference between the focal plane images in panels a and b. In panel c, the aberration
amplitude is reduced, so the interference between the speckles and Airy rings is more pronounced (they have comparable amplitudes),
breaking the symmetry between the two speckles. Panel d illustrates the superposition approximation described by Equation 7.

intensity PSF can be written accordingly:

φ(u ) =
∑

i

2πhi

λ
cos(2π fi u +ψi ) → I (α)≈I0(α)+

∑

i

(
πhi

λ

)2

(I0(α + fiλ) + I0(α− fiλ)) , 7.

where u is the 2D pupil plane spatial coordinate, α is the 2D angular sky coordinate on the focal
plane image (unit: rad), hi is the amplitude of each sine wave (unit: m), fi its spatial frequency (unit;
m−1), and ψi its phase. The unaberrated PSF, I0, is an Airy function in the Figure 5 example.

This approximation, or its continuous variant written as a Fourier transform, provides a con-
venient semianalytical framework for deriving ExAO performance by linking contrast to residual
wavefront errors (Guyon 2005, Kasper et al. 2010). As shown in Figure 5, the approximation is
only valid when speckles due to wavefront aberrations exceed the static diffraction features of the
image, a regime commonly encountered in ExAO systems.

3.3.2. Speckle lifetime (intensity). Under the frozen flow approximation, a fixed wavefront map
is moved across the beam by the wind velocity vector V⃗ . The sine wave wavefront correspond-
ing to a specific speckle is entirely moved out of the pupil within D/V . Numerical derivation
reveals that the speckle intensity coherence time is τI = 0.6D/V (Macintosh et al. 2005). In a
conventional nonpredictive AO control loop with performance dominated by time-lag error, the
residual wavefront error is a phase-shifted attenuated copy of the original incoming sine wave
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NEURAL NETWORK IN WAVEFRONT ESTIMATION
Angel et al. 1990 : 
­ ANN to correct piston and tip-tilt of the 6 MMT segments
­ Single layer of hidden nodes; input: in- & out-focus

Sandler et al. 1991
­ Successful test on a real star at 1.5m SOR
­ Agreement to SH-WFS

Barrett and Sandler 1993
­ Apply to HST
­ Good agreement with phase retrieval algo

But also used for:
­ Prediction (e.g. Jorgenson & Aitken 1992, McGuire et al. 1999)
­ Slope measurements (Montera et al. 1996)
More recently
­ MOAO : use MLP with WFS signal as input (e.g. Osborn et al. 2011on CANARY)
­ CNN for WF reconstruction from slopese and prediction (Swanson et al. 2018)

WFS IN THE VLT/ELT ERA29/10/2019

Background

Figure 2.10: Schematic representation of the operation of the artificial neural network

used to recover the phase. The first layer of neurons takes the intensity (camera data)

from the two focal planes. [18]

the static aberrations in the Hubble Space Telescope (HST) primary mirror. Identically
to Sandler et al. the network was trained to estimate the first Zernike coefficients and
optimized with respect to the mean squared error. They thus successfully recovered
phase distortion within only a small residual error.

2.3.2 Convolutional neural networks

2.3.2.1 Description

Regular fully-connected neural networks do not scale well to high dimension images. For
example, let us consider a fully-connecteded network with a single layer composed of
k nodes. For an input image of 128 ⇥ 128 ⇥ 2, the number of interconnections (and
weights) is given by k ⇥ 128 ⇥ 128 ⇥ 2. If k is small it may not be a problem but it
highly limits the representation capacity of the network, therefore large values of k are
often needed and cause fully-connected networks to be particularly inefficient to process
images. Furthermore, fully-connected networks do not preserve the spatial organization
of the images through the network. They are therefore difficult to deal with and to
interpret.

19

© 1991 Nature  Publishing Group

SH measurement

Var(SH – NN)
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NEURAL NETWORK IN WAVEFRONT ESTIMATION
Improved image-based wavefront sensing for JWST (Paine & Fienup 2018)

­ Aim: generate starting estimate with CNN within the capture range

WFS IN THE VLT/ELT ERA29/10/2019

which was matrix-multiplied into a single “hidden” vector,
which was then fed through a nonlinear sigmoid function
and matrix-multiplied to an output vector corresponding to
the Zernike polynomial coefficients. Models with this type
of architecture are known as perceptrons [12]. Another type
of model, the convolutional neural network (CNN), uses
learned convolutional kernels and downsampling methods to
perform machine learning tasks with images. CNNs are better
suited to image-based tasks than perceptrons, since they learn
based on groups of pixels rather than considering each
pixel independently [13]. They have been used recently to
attempt to recover phase maps from images for use in lenseless
computational imaging [14]. We intend to recover Zernike co-
efficients for building wavefront maps, which capture aberra-
tions. We examined the most accurate CNNs for ImageNet
classification and chose Google’s Inception v3 architecture,
which uses blocks with a variety of differently sized convolu-
tional kernels on the same input to determine important fea-
tures at different size scales [15]. We adapted their model to
perform regression analysis, which provides continuous values
as the output. The architecture of this model is shown in Fig. 1.

Since we already use a physical model to describe the propa-
gation and detection of light in an intensity plane, we can sim-
ply create and feed simulated PSFs into our CNN based on
Zernike coefficients. This approach assumes there are known
values of our model such as pupil amplitude, f-number, and
pixel pitch. For our case, we consider a uniformly illuminated
JWST aperture, shown in Fig. 2, which is zero-padded in an
array twice the width of the aperture to produce a PSF (image)
that is Nyquist sampled. We produced PSFs based on second-
through fifth-order global Zernike polynomials, and did not
include any per-segment errors. We ignored global piston
and did not include tip or tilt terms, as these can be estimated
rapidly using centroiding algorithms or other registration meth-
ods [16]. Centroiding algorithms can estimate the center of a
PSF to within 1 pixel, which is within the capture range of

nonlinear optimization using tip and tilt [17]. All PSFs were
normalized to have a maximum value of 1 before being fed into
the CNN.We used minibatch training with a minibatch size of
16 PSFs. A CNN’s learned parameters are updated through the
use of back-propagated gradients for each CNN operation.
Minibatch training updates the CNN’s parameters based on
the gradients from a minibatch of inputs rather than just a
single input, which increases convergence rate [18]. Machine
learning relies on stochastic gradient descent algorithms, where
updates are based on the gradient and a parameter known as the
learning rate [19]. The learning rate controls the step size of an
update, with a smaller learning rate indicating a smaller move
through the parameter space. For minimization, we used
Adam, a gradient-based stochastic optimization algorithm with
a learning rate that is adaptive, meaning it is initialized to a
user-defined value and then updated according to values of
the gradient [20]. Our CNN’s minimized loss function was
the RMS difference between predicted Zernike coefficients
and true Zernike coefficients. After updating parameters for
40 groups of 16 PSFs, we determined the average loss across
10 different groups of 16 PSFs, known as a validation stage.
Examining the validation loss in comparison to the training loss
informs us of overfitting in our CNN [21]. One round of train-
ing and validation consists of an epoch of training our CNN.

We initially trained the model on PSFs only with 2.3 RMS
waves of aberration (which is a quite large amount of aberra-
tion) for 5000 epochs, with an initial learning rate of 2 × 10−2,
which was halved every 1000 epochs. We then allowed the
PSFs to have anywhere from 1.0 RMS waves to 4.0 RMS waves
of aberration and trained for 20,000 epochs, starting the learn-
ing rate at 1 × 10−3 and lowering to 0.5 × 10−3 after the first
10,000 epochs. Finally, we included noise in our PSFs that in-
cluded Poisson noise and optionally included detector noise,
background noise, and dead pixels. An example of one mini-
batch of these input PSFs can be seen in Fig. 3. The peak pho-
tons and any additional noise parameters for each PSF were
chosen from a uniform random distribution, with low and high
values given in Table 1. These many noise options make our
CNN robust to a wide variety of noise that could be found
experimentally. We trained on these noisy PSFs for an addi-
tional 50,000 epochs, starting with a learning rate of 2.5 ×
10−3 and lowering to 1.0 × 10−3, 0.75 × 10−3, 0.5 × 10−3,
and 0.3 × 10−3, respectively, after every 10,000 epochs. After
this training, our validation loss was 0.373 waves of RMS dif-
ference between the predicted and true Zernike coefficients.
The residual RMS WFE grew monotonically within the train-
ing region, as shown in Fig. 4.

To determine the effectiveness of our CNN’s predictions,
we used a Monte Carlo analysis. We simulated PSFs made
up of only the Zernike coefficients predicted by our CNN.

Fig. 1. Adapted Inception v3 architecture [15] used to predict Zernike coefficients. The layers flow from left to right, where the input is fed to the
furthest left convolutional block, and the output comes from the furthest right fully connected block.

Fig. 2. JWST aperture function used for simulating PSFs.
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The noise in these simulated PSFs was generated in the same
way as for the training PSFs. We used values of total RMSWFE
varying from 0.25 waves up to 4.0 waves, in increments of 0.25
waves. For each amount of RMS WFE, we simulated 250
different PSFs. As a benchmark for each PSF, we used 30 ran-
dom starting guesses, each with the same RMSWFE as the true

wavefront. We performed nonlinear optimization using a
limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [22] with these random starting guesses. We kept track
of both the best error metric value and the lowest residual RMS
WFE for the solutions from these optimizations. In parallel, we
fed the PSF to our CNN and performed optimization using the
CNN’s predictions as our initial estimates.

We performed an initial Monte Carlo with 256 × 256 pixel
pupil and PSF arrays. We found that the high wavefront error
resulted in aliasing and PSF energy falling outside of our simu-
lated detector window. This resulted in some fits that were
correct inside of our simulated detector window, but diverged
from the true PSF outside of said window. We increased our
image array size to 512 × 512 pixels, knowing that to be rea-
sonable since the detectors on the JWST are at least 1024 ×
1024 pixels [23,24]. We doubled the sampling in the pupil
domain as well, in order to prevent aliasing. We also cropped
the PSF down to 256 × 256 pixels before feeding it to our
CNN. This meant we did not need to retrain our CNN,
and could use the larger array for optimization purposes. These
steps improved convergence in our analysis.

Figure 5 shows the comparison of RMS WFE after optimi-
zation using our CNN’s predictions for the initial estimate and
using the best of 30 random starting guesses. The dashed lines
indicate the random starting guesses that gave the best residual
RMS WFE, while the dotted lines indicate the random starting
guesses that gave the best gain and bias-invariant NMSE value.
In a real situation, we would not have access to the true wave-
front, so we would choose the reconstruction with the best
error metric value from all the random starting guesses.
Even with the selection of the best residual RMS WFE from
the random starting guesses, we see that the median result of
the CNN’s predictions outperforms random starting guesses by
orders of magnitude for any true RMS WFE above 0.5 waves.
We also observed in most cases that the CNN’s prediction was
close enough that the optimization algorithm found a solution

Fig. 3. Example of a minibatch of input PSFs used to train CNN.
All PSFs are square-rooted to show dim features.

Table 1. Bounds on Peak Photons and Noise
Parameters Added to PSFs for Training and Monte Carlo
Simulation

Low Value High Value

Peak photons (photons) 4000 15,000
Read noise (e−) 10 100
Background noise (photons) 0.0 4.0
Fraction of bad pixels (%) 0.1 1.0

Fig. 4. Residual RMS WFE values for wavefronts synthesized from
CNN predicted coefficients compared to the true wavefront. The
shaded area represents the bounds of the 10th and 90th percentiles
of the residual RMS WFE from 100 trials, with the central black line
representing the median values of these trials.

Fig. 5. Residual RMS WFE values for optimizations based on
random starting guesses and the CNN’s predictions. The shaded area
represents the bounds of the 10th and 90th percentiles of the residual
RMSWFE, with the central black line representing the median values.
The dashed red line indicates 1/140 waves, or 1/10 of the Marechal
criterion.
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Background

classifier as regularizer. The architecture is shown in the Figure 2.15. For this project, a
input convolutional layer and a pooling layer have been added at the start of the network.
It ensure that the input features map contains 3 channels (as in standard RGB images).
The last fully connected layers have also been modified to perform regression.

Figure 2.15: Adapted Inception v3 architecture used to predict Zernike coefficients.

The layers flow from left to right, where the input is fed to the furthest left convolutional

block, and the output comes from the furthest right fully connected block. [11]

Unet

The U-Net is a convolutional neural network initially proposed to perform biomedical
image segmentation. Its name come from the U-shaped geometry of its architecture. It
can be divided in three parts: the contraction, the bottleneck and the expansion. First,
the contraction part is made of successive 3 ⇥ 3 convolution layers followed 2 ⇥ 2 max
pooling layers. The operation is repeated multiple times to progressively downsample
the feature map. Secondly from the extracted features contained in the bottleneck, the
expansion part progressively upsamples the data using unpooling layers and skip con-
nections. At the end, a image of the same size than the input image is recovered. In this
project, to perform regression instead of segmentation, the last Softmax layer has been
removed.

Figure 2.16: Unet architecture.

24

5
Inception v3



METHOD
Two datasets are created:
­ Distributed on 20 or 100 Zernike modes
­ Spatial PSD ∝ 1/fˆ2 (typical of good optics)
­ Average of 350nm RMS WFE (~1rad)
­ Dataset of 100,000 images
­ λ=2.2µm, sampling similar to NIRC2-Keck
­ Defocus (for out-of-focus image) = λ/4
­ Circular aperture; 128x128 px images
­ Photon noise (SNR=100)

WFS IN THE VLT/ELT ERA29/10/2019 6



CNN ARCHITECTURES
We compare several architectures

29/10/2019 WFS IN THE VLT/ELT ERA

Background

training of the network will also take advantages of the pretrained weights of the model
on Imagenet to speed-up the training.

Figure 2.13: VGG-16 architecture. [22]

Resnet

About a year later in 2015, Residual Neural Network (ResNet) [23] appeared and in-
troduced an innovative architecture based on skip connections and systematic batch
normalization. One of the motivations of this architecture is the vanishing gradient
problem. In very deep neural networks, the intensity of gradients may decrease from lay-
ers to layers during the backpropagation steps. To overcome this issue, the introduction
of skip connections ensure the smooth and easy flow of the gradients. This architecture
enables to create very deep networks with up to 152 successive layers.

Figure 2.14: Resnet-34 architecture. [23]

Inception v3

The inception v3 architecture [24] proposes an alternative to the assembly conventional
layers: instead of creating very deep networks which are particularly difficult to optimize,
the idea is to make the network wider instead of deeper. The solution is to use at the
same level multiple filters of different sizes and shapes. For example, 1⇥1, 3⇥3 and 1⇥7

convolution kernels are applied to the same feature map and each one detects specific
patterns depending on its receptive field properties. Secondly, it also uses an auxiliary

23

VGG-16 Zernike coefficients

Inception v3 Zernike coefficients

ResNet - 50 Zernike coefficients

U-Net / U-
Net++

Direct phase map

ResNet-34:

7



CNN ARCHITECTURES

WFS IN THE VLT/ELT ERA29/10/2019
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Convolutional neural network (CNN or ConvNet) considers another approach, they take
advantage of the hierarchical pattern in the images. The idea behind CNN is inspired by
a biological concept: the receptive field. The receptive field a portion of sensory space
which can trigger the activation of neuronal cell. It basically acts as a detector sensitive
to a particular type of stimuli. For instance, an edge or a color. Convolutional neural
networks approximates this biological function using the convolution operation.

Figure 2.11: Example of convolution operation for input data x 2 R1⇥5⇥5
and a

convolution kernel u 2 R1⇥3⇥3
. [Li Yin, Computer vision blog]

Let us consider an input x of size RC⇥H⇥W (e.g. 2 ⇥ 128 ⇥ 128) and a convolution
kernel u of receptive field RC⇥h⇥w (e.g. 2⇥ 3⇥ 3). The convolution operation consists
in sliding the kernel across the input image and sum the element-wise product between
the overlapping input elements and the kernel weights (u, b).

oi,j = bi,j +
C�1X

c=0

(uc ⇤ xc)[i, j] = bi,j +
C�1X

c=0

N�1X

n=0

M�1X

m=0

uc,n,mxc,n+i,m+j (2.44)

The output o has the dimension RC⇥(H�h+1)⇥(W�!+1). A multilayer convolutional neu-
ral network can then be built by repeating the convolution operation on the output.

Pooling layers

Along with the standard convolution layers, pooling layers are often used to down-sample
the feature map. It is mainly used to reduce the input dimension while preserving the
spatial organization. Considering an input tensor x 2 RC⇥(rh)⇥(sw) and pooling filter of

20

10 - 30 Millions of parameters

Background

size h⇥ w, the max pooling operation is defined as

oi,j = max
n<h,m<w

xc,ri+n,sj+m (2.45)

The output o has the dimension RC⇥r⇥s. Pooling layers also tends to decrease potential
over-fitting effects.

Figure 2.12: Max-pooling operation (kernel 2x2, stride 2x2) [20]

Batch normalization layers

Batch normalization layers [21] are also often used to control the output of the convolution
layers. During the training, the distribution of the activations is constantly changing
and tends to slow down the training as the layers must adapt themselves to changing
distributions. Batch normalization layers solve this issue by normalizing the input of
each layer. First the mean and the variance of the layers are computed over a batch

µB =
1

B

BX

b=1

xb (2.46)

�
2
B =

1

B

BX

i=b

(xb � µB)
2 (2.47)

Then, the input x is normalized, scaled and shifted

ob = �
xb � µBq
�
2
B
+ "

+ � (2.48)

� and � are parameters optimized during the learning.

21

Convolution:

Max pooling:
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TRAINING AND FIRST RESULTS

First you wait…

29/10/2019 WFS IN THE VLT/ELT ERA 9



RESULTS
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True phase

ResNet-50
Residual phase

U-Net
Residual phase
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RESULTS
Input WFE ~1rad

WFS IN THE VLT/ELT ERA29/10/2019

Simulations

number of parameters and especially the memory consumption of the nested architecture
(Unet++) is much more important. There is thus a trade-off between the accuracy gain
and the training time/model size.

Architecture Nbr of
parameters Size (MB) Inference time (s)

Unet 27, 395, 265 484.22 0.2793s

Unet++ 34, 829, 505 2444.22 0.413s

Table 3.10: Average values of the network characteristics for a single input (batch size

= 1). The inference time (forward pass) is calculated on CPU, Intel Xeon e3-1230v5.

3.3.3 Comparison

This extended set of data first demonstrated that convolutional neural networks can be
trained to estimate a large number of Zernike coefficients. This extension has however
a non negligible cost, it reduces significantly the network performances. In both data
set, the direct pixel-wise wavefront estimation (Unet) exhibited increased performances.
Finally, it can be noticed that the Inception architecture performs slightly better than the
Resnet architecture on the second data set (100 Zernike) while the opposite behaviour is
observed on the first data set. (20 Zernike) The exact reason is still unclear and further
investigations may be conducted.

Figure 3.27: RMS wavefront error between the exact and the estimated phase map

for the different architectures explored.

45

Architectures Inference time

Inception v3 0.1182s

ResNet 50 0.1090s

U-Net 0.1102s

U-Net++ 0.1358s
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ROBUSTNESS
­ CNN works best within training range
­ Narrow training region gives better estimates

WFS IN THE VLT/ELT ERA29/10/2019

1

1 2

2

12



ROBUSTNESS : NOISE

29/10/2019 WFS IN THE VLT/ELT ERA

SNR=25

SNR=100

Trained here
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COMPARISON TO HYBRID INPUT-OUTPUT
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20 Zernike 100 Zernike Inference time

U-Net 0.0132+-0.0019 0.0976+-0.0133 0.1102s

HIO 0.0036+-0.0047 0.0231+-0.0276 13.654s

Success rate of the HIO algorithm is 78% wrt to 0.2rad 



CNN FOR POST-CORONO IMAGES

Ø Vortex charge-2 removes Airy pattern for circular aperture
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CNN FOR POST-CORONO IMAGES

­ Does our CNN works with post-vortex image(s)?
­ How does it performs compared to PSF-images?

Analysis with 
Ø Low aberrations regime: λ/44, or 50nm @ 2.2µm 
Ø Annular aperture
Ø Single in-focus images
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ONLY IN-FOCUS IMAGES : RESIDUAL VS NOISE

Training sample:

100,000

RMS:

PSF: 1nm +- 0.3

Cor: 0.6 +-0.1
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ONLY IN-FOCUS IMAGES : RESIDUAL VS NOISE

Training sample:

20,000

RMS:

PSF: 6.4nm +- 4.4

Cor: 1.4 +-0.4
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ONLY IN-FOCUS IMAGES : RESIDUAL VS NOISE

Training sample:

20,000

RMS:

PSF: 29nm +- 5

Cor: 4.5 +-1
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A FASHIONABLE TREND
­ Torben et al., Neural networks for image-based wavefront sensing for astronomy

“We trained the well-known “Inception” network using the artificial data sets and found that although the accuracy does not permit 
diffraction-limited correction, the potential improvement in the residual phase error is promising for a telescope in the 2–4 m class”

Outside astronomy and very recently
­ Nishizaki et al. 2019, Deep learning wavefront sensing
­ Guo et al. 2019, Improved Machine Learning Approach for Wavefront Sensing
­ Möckl et al. 2019, Accurate phase retrieval of complex point spread functions with deep residual 

neural networks
­ Işil et al. 2019, Deep Iterative Reconstruction for Phase Retrieval
­ Hu et al. 2019, Self-learning control for wavefront sensorless adaptive optics system through deep 

reinforcement learning

… and more …
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CONCLUSIONS

CNN is another tool for focal plane wavefront sensing which may be worth considering

Perspectives: 
­ Combination of CNN with other techniques
­ Post-coronographic PSF; twin-image problem and stagnation behavior

Future
­ Robustness (noise regimes, residual atmospheric turbulence, phase diversity, etc.)

­ Lab experiment
­ Beyond CNN

See also Vanberg et al., in prep.
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