

FOCAL PLANE WAVEFRONT MEASUREMENT WITH CNN

G. Orban de Xivry <u>P.-O. Vanberg</u>, O. Absil, G. Louppe

Firenze 2019 WFS in the ELT/VLT ERA

CONTEXT

Guyon 2018

Focal plane wavefront sensing:

- Particular interest for coronography: measuring aberrations where it matters most
- Optically simple (but computationally challenging)
- Focal plane intensity <-> pupil complex amplitude: non-linear and degenerate

FOCAL PLANE WFS CHALLENGES

Twin image problem:

 $h(x), h(-x)^*$ have the same $|\mathcal{F}{.}|$

sign ambiguity of Zernike even mode

Capture range problem (likelihood of stagnating in local minima) probability decreases as ~ 1 / R^{n+1} $R \propto RMS WFE$ $n \propto$ number of coefficients

What can Convolutional Neural Network do for us?
And is it a promising avenue for high-contrast imaging?

NEURAL NETWORK IN WAVEFRONT ESTIMATION

0.00

3

5

Angel et al. 1990 :

- ANN to correct piston and tip-tilt of the 6 MMT segments
- Single layer of hidden nodes; input: in- & out-focus

Sandler et al. 1991

- Successful test on a real star at 1.5m SOR
- Agreement to SH-WFS

Barrett and Sandler 1993

Apply to HST

Good agreement with phase retrieval algo

But also used for:

- Prediction (e.g. Jorgenson & Aitken 1992, McGuire et al. 1999)
- Slope measurements (Montera et al. 1996)

More recently

- MOAO : use MLP with WFS signal as input (e.g. Osborn et al. 2011 on CANARY)
- CNN for WF reconstruction from slopese and prediction (Swanson et al. 2018)

NEURAL NETWORK IN WAVEFRONT ESTIMATION

Improved image-based wavefront sensing for JWST (Paine & Fienup 2018)

Aim: generate starting estimate with CNN within the capture range

METHOD

Two datasets are created:

- Distributed on 20 or 100 Zernike modes
- Spatial PSD $\propto 1/f^2$ (typical of good optics)
- Average of 350nm RMS WFE (~1rad)
- Dataset of 100,000 images
- λ =2.2µm, sampling similar to NIRC2-Keck
- Defocus (for out-of-focus image) = $\lambda/4$
- Circular aperture; 128x128 px images
- Photon noise (SNR=100)

CNN ARCHITECTURES

We compare several architectures

VGG-16	Zernike coefficients
Inception v3	Zernike coefficients
ResNet - 50	Zernike coefficients
U-Net / U- Net++	Direct phase map

CNN ARCHITECTURES

Convolution:

Input data

Max pooling:

10 - 30 Millions of parameters

TRAINING AND FIRST RESULTS

RESULTS

RESULTS

Input WFE $\sim 1 rad$

Architectures	Inference time
Inception v3	0.1182s
ResNet 50	0.1090s
U-Net	0.1102s
U-Net++	0.1358s

ROBUSTNESS

- CNN works best within training range
- Narrow training region gives better estimates

ROBUSTNESS : NOISE

COMPARISON TO HYBRID INPUT-OUTPUT

	20 Zernike	100 Zernike	Inference time
U-Net	0.0132+-0.0019	0.0976+-0.0133	0.1102s
HIO	0.0036+-0.0047	0.0231+-0.0276	13.654s

Success rate of the HIO algorithm is 78% wrt to 0.2rad

CNN FOR POST-CORONO IMAGES

- Does our CNN works with post-vortex image(s)?
- How does it performs compared to PSF-images?

Analysis with

- \succ Low aberrations regime: $\lambda/44$, or 50nm @ 2.2µm
- > Annular aperture
- Single in-focus images

ONLY IN-FOCUS IMAGES : RESIDUAL VS NOISE

Zernike mode #

ONLY IN-FOCUS IMAGES : RESIDUAL VS NOISE

ONLY IN-FOCUS IMAGES : RESIDUAL VS NOISE

Zernike mode #

A FASHIONABLE TREND

Torben et al., Neural networks for image-based wavefront sensing for astronomy

"We trained the well-known "Inception" network using the artificial data sets and found that although the accuracy does not permit diffraction-limited correction, the potential improvement in the residual phase error is promising for a telescope in the 2–4 m class"

Outside astronomy and very recently

- Nishizaki et al. 2019, Deep learning wavefront sensing
- Guo et al. 2019, Improved Machine Learning Approach for Wavefront Sensing
- Möckl et al. 2019, Accurate phase retrieval of complex point spread functions with deep residual neural networks
- Işil et al. 2019, Deep Iterative Reconstruction for Phase Retrieval
- Hu et al. 2019, Self-learning control for wavefront sensorless adaptive optics system through deep reinforcement learning

... and more ...

CONCLUSIONS

CNN is another tool for focal plane wavefront sensing which may be worth considering

Perspectives:

- Combination of CNN with other techniques
- Post-coronographic PSF; twin-image problem and stagnation behavior

Future

- Robustness (noise regimes, residual atmospheric turbulence, phase diversity, etc.)
- Lab experiment
- Beyond CNN

See also Vanberg et al., in prep.