

What is MAVIS?

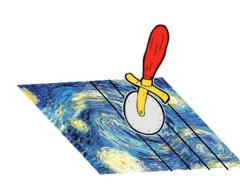
MCAO

Assisted

Visible

Imager (and)

VRI


FoV 30"x30"

30"x30" corrected FoV

pxscl 7.1mas

Spectrograph

Monolitic IFU

3.6"x2.5"

370-950 nm

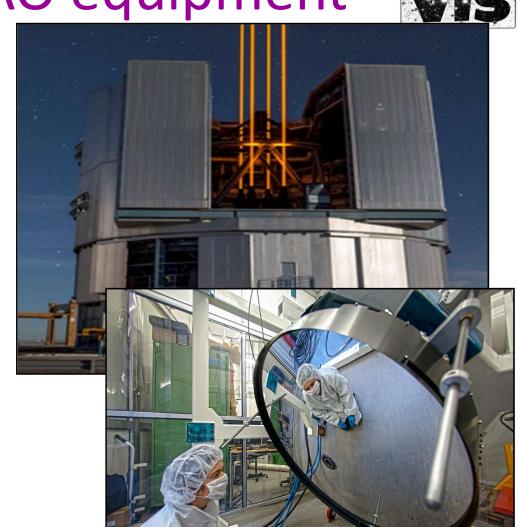
R 5000-10000

MAVIS AOM core team:

G. Agapito, M. Aliverti, M. Bergomi, M. Bonaglia, L. Busoni, T. Fusco, G. Gausachs, D. Gratadour, D. Greggio, P. Haguenhauer, L. Marafatto, B. Neichel, E. Pinna, C. Plantet, K. Radhakrishnan, F. Rigaut, S. Stroebele, A. Vaccarella, D. Vassallo, V. Viotto

Already existing AO equipment

Context:


Adaptive Optics Facility completed

Where: VLT UT4

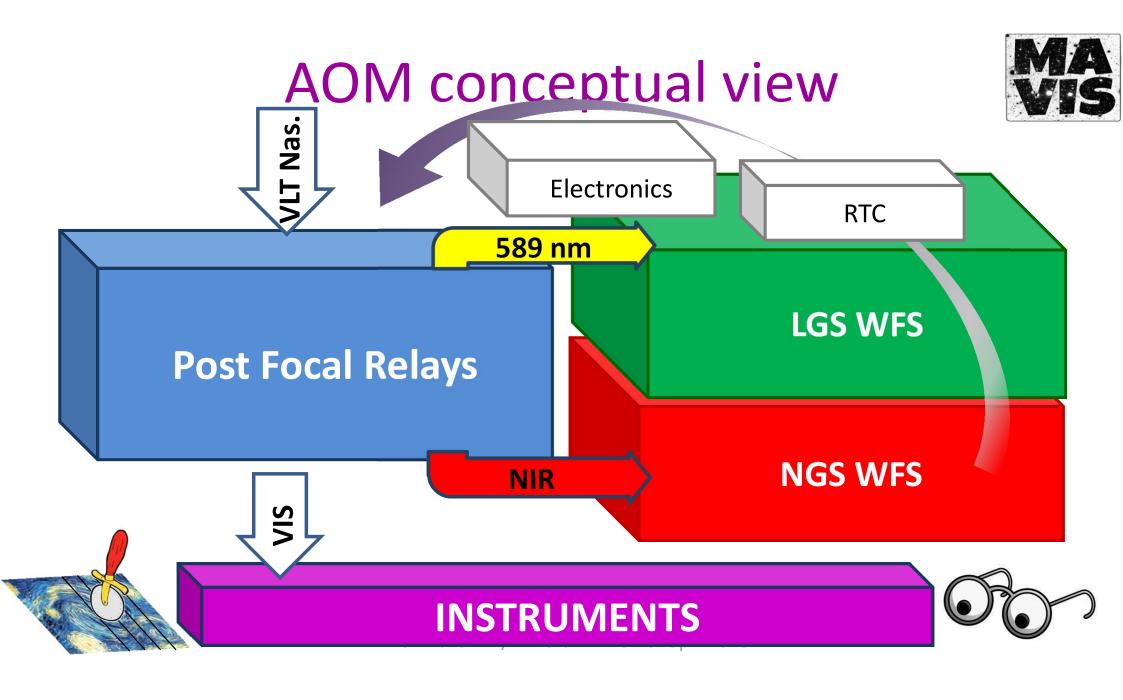
- What: key technical components are
 - Deformable Secondary Mirror (1170 act)
 - 4 Laser Guide Stars (routinely working)
- Serving:
 - MUSE: Optical IFU
 - HAWK-I: Wide-field IR imager
 - ERIS (from 2020): 1-5μm imager/IFU

AOF full potential not exploited yet

WFS in the VLT/ELT era IV Workshop -

AOM conceptual view

VLT Nas.


AOM machine

VIS

INSTRUMENTS

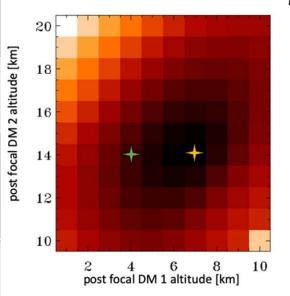
AOM conceptual view Nas. 589 nm Field splitter Field de-rotator **DMs** Sensing **Re-imaging Optics** Pupil re-imagers element Field de-rotator(s) ADC(s) Multiplicity Cameras Instrument Acquisition selector camera Pick-off optics **NIR Cameras NIR** Multiplicity VIS NGS selector systems **INSTRUMENTS**

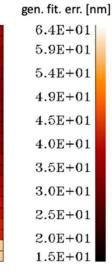
AOM trade-offs

	-		
		-	
	W 1		
 ,	1.50		

Trade-off	Questions	
De-rotation scheme	 How to compensate NGS FoV, LGS FoV and SCI FoV apparent rotations 	
PFR optical design	Reflective vs Transmissive1 or 2 ADCs	
DM configuration	# of DMsConj. altitudePitch	
LGS configuration	# of LGSsAsterism	
NGS WFS trade-off	# of NGSsFoV accessibilityBefore/after DMs	
Wavelengths	How blue?J-H band for NGS?	

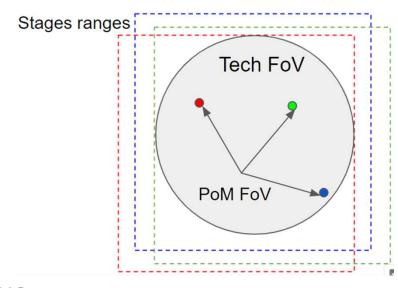
Trade-off	Questions	
De-rotation scheme	 How to compensate NGS FoV, LGS FoV and SCI FoV apparent rotations 	
PFR optical design	Reflective vs Transmissive1 or 2 ADCs	
DM configuration	# of DMsConj. altitudePitch	
LGS configuration	# of LGSsAsterism	
NGS WFS trade-off	# of NGSsFoV accessibilityBefore/after DMs	
Wavelengths	How blue?J-H band for NGS?	


Rationales:


- Quality
- Throughput
- MAIT
- Flexibility
- Modularity

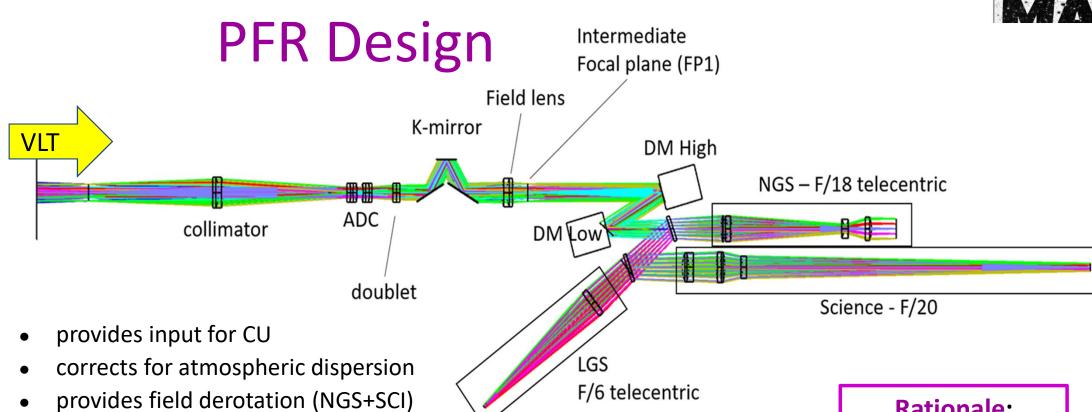
Trade-off	Questions	
De-rotation scheme	 How to compensate NGS FoV, LGS FoV and SCI FoV apparent rotations 	
PFR optical design	Reflective vs Transmissive1 or 2 ADCs	
DM configuration	# of DMsConj. altitudePitch	
LGS configuration	# of LGSsAsterism	
NGS WFS trade-off	# of NGSsFoV accessibilityBefore/after DMs	
Wavelengths	How blue?J-H band for NGS?	

Trade-off	Questions
De-rotation scheme	 How to compensate NGS FoV, LGS FoV and SCI FoV apparent rotations
PFR optical design	Reflective vs Transmissive1 or 2 ADCs
DM configuration	# of DMsConj. altitudePitch
LGS configuration	# of LGSsAsterism
NGS WFS trade-off	# of NGSsFoV accessibilityBefore/after DMs
Wavelengths	How blue?J-H band for NGS?


«One laser, two LGS for two WFS: technology, on-sky demonstration and first results»

-> P. Haguenauer tomorrow!!!

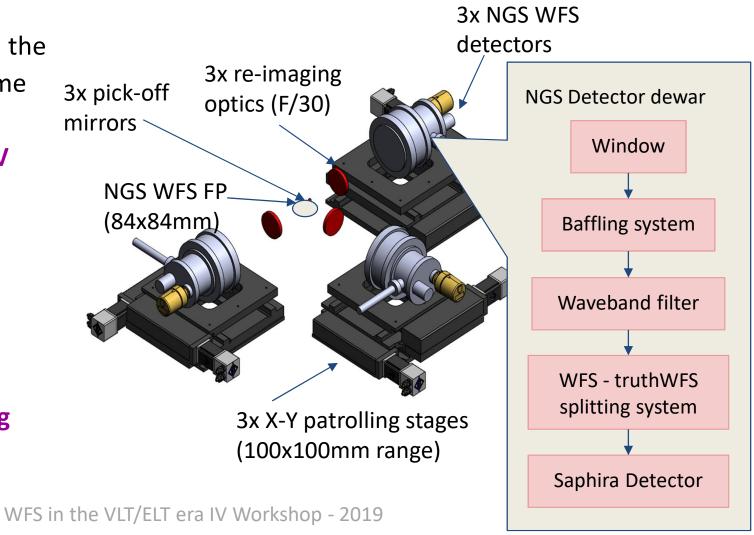
Trade-off	Questions
De-rotation scheme	 How to compensate NGS FoV, LGS FoV and SCI FoV apparent rotations
PFR optical design	Reflective vs Transmissive1 or 2 ADCs
DM configuration	# of DMsConj. altitudePitch
LGS configuration	# of LGSsAsterism
NGS WFS trade-off	# of NGSsFoV accessibilityBefore/after DMs
Wavelengths	How blue?J-H band for NGS?


Trade-off	Questions	
De-rotation scheme	 How to compensate NGS FoV, LGS FoV and SCI FoV apparent rotations 	
PFR optical design	Reflective vs Transmissive1 or 2 ADCs	
DM configuration	# of DMsConj. altitudePitch	
LGS configuration	# of LGSsAsterism	
NGS WFS trade-off	# of NGSsFoV accessibilityBefore/after DMs	
Wavelengths	How blue?J-H band for NGS?	

AOM trade-offs

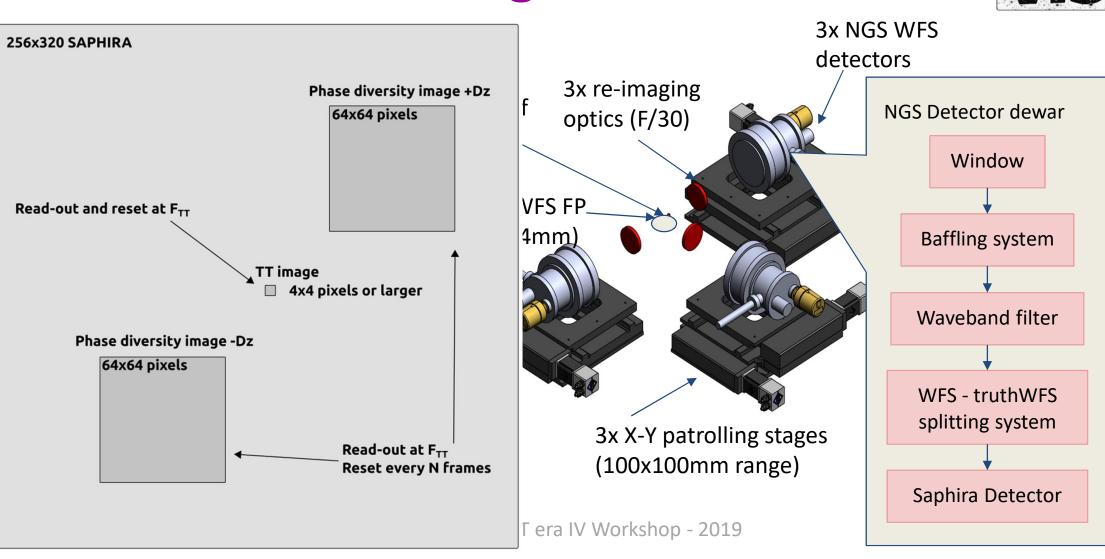
Trade-off	Questions	
De-rotation scheme	How to compensate NGS FoV, LGS FoV	AOF upgrade
	and SCI FoV apparent rotations	PFR design
PFR optical design	Reflective vs Transmissive1 or 2 ADCs	NGS WFS design
DM configuration	# of DMsConj. altitude	LGS WFS design
	• Pitch	I/Fs
LGS configuration	# of LGSsAsterism	Instrument Control
NGS WFS trade-off	• # of NGSs	RTC & Electronics
	FoV accessibilityBefore/after DMs	Procurement
Wavelengths	How blue?J-H band for NGS?	Calibrations

- re-images meta-pupils onto DMs
- feeds the NGS WFS with a 2 arcmin FoV at infinity (NIR band)
- provides means for stars acquisition [acquisition camera still missing]
- feeds the LGS WFS with the LGSes FoV at 90-230km altitude (Na line)
- delivers a 30" diameter FoV to the instruments (VIS band)
- provides at least 2 output ports/and includes means to switch 2019


Rationale:

- Distortions
- Throughput
- Compactness
- Alignment
- Modularity

NGS WFS Design


MA VIS

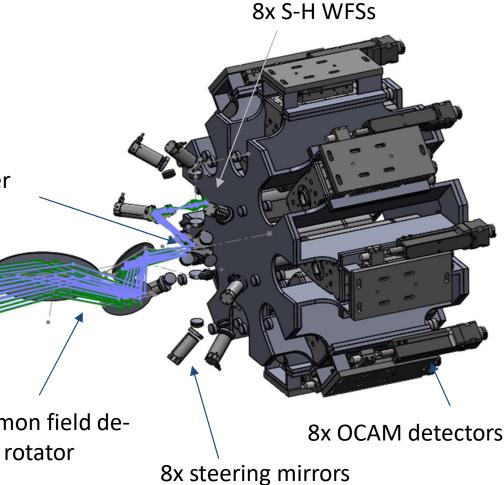
- 3 NGSes can be sensed, in the J+H bands, at the same time
- 2 arcmin diameter unrestricted patrolling FoV (including SCI FoV)
- 1x1 subaperture pupil sampling
- 30mas sampling on the detector
- Tomographic truth sensing included

NGS WFS Design

LGS WFS Design

8 LGSes

17.5" radius circular asterism


S-H WFS 40x40 subap. pupil sampling

#pix/subap 6x6

includes means for FoV derotation

includes means to focus on Na layer

(elevation)

Focussing optics

Common field de-

WFS in the VLT/ELT era IV Workshop - 2019

Field splitter

(TBC)

Simulations

ESO TLR atmospheric profile:

 L_0 [m]=25m seeing (zenith) [arcsec] = 0.8 Na multi-peak profile

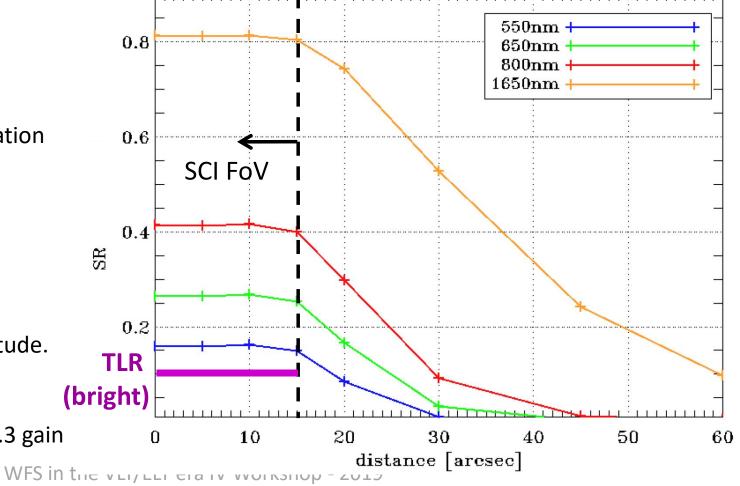
Telescope:

Pupil = 8m with 16% obscuration Zenith angle= 30deg TFoV 120arcsec diameter

DMs:

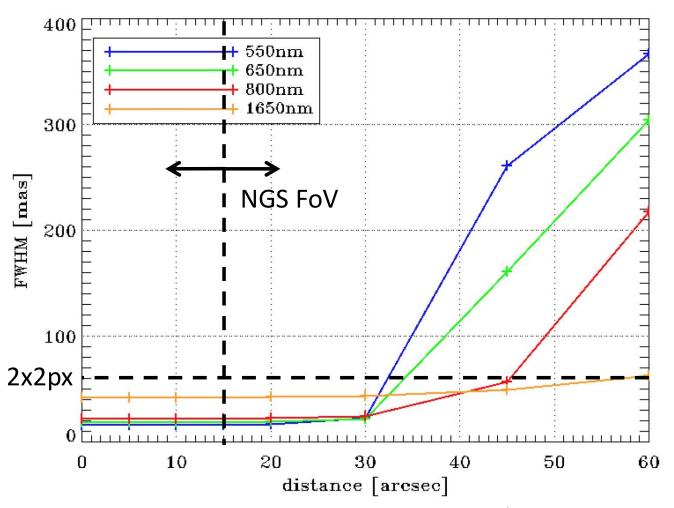
pitch [0.22,0.22,0.3]m altitude [0,4,14] km

Control:


Rec layers @ Cn2 profile altitude.

Opt. FoV: 15arcsec radius

POLC


Integrator controllers with 0.3 gain

Delay = 2frames (2ms)

Simulations - TFoV

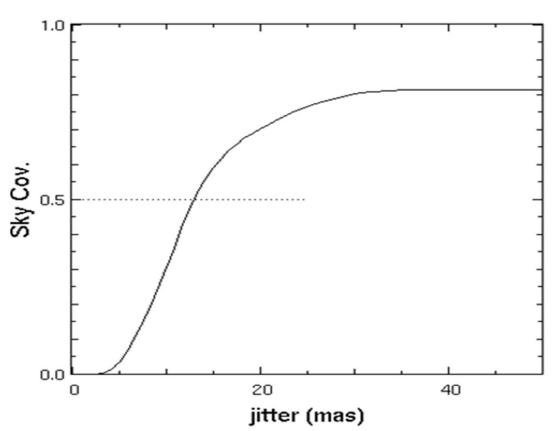
Sky Coverage criteria:

- Strehl Ratio
- Encircled Energy (info loss)
- FWHM (sensitivity)

WFS in the VLT/ELT era IV Workshop - 2019

Assumption and terms

Tomographic error (parameters: off-axis jitter + availability of stars)


十

Windshake error (parameter: frame rate)

+

Noise error

(parameter: ph/subap/frame)

WFE Preliminary Budget

TLR-33: SR = 10% (15% goal) at V band (550 nm), ~132 nm (120 nm goal).

Contributions	Nominal [nm]	Calibration residual (%)	After calibration [nm]
AO (no vibration, bright NGS)	114	100	114
NCPA	50	50	25
Manufacturing	29	100	29
Alignment	8	100	8
Thermal	TBD		
Image motion	TBD		
Total			120.5 nm

Thank you

WFS in the VLT/ELT era IV Workshop - 2019