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|.  THE PROBLEM OF SEGMENTED PUPIL
1. Island effect description
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Low wind effect on VLT/SPHERE: impact, mitigation strategy, and results, Milli et al, SPIE 2018



|.  THE PROBLEM OF SEGMENTED PUPIL
2. Simulation parameters for COMPASS, an end-to-end AO simulation tool

@: Telescope

ELT-like pupil ® = 39 m
with six-legged spider of 51 cm thickness

% Deformable mirror

M4-like with 4310 actuators
controlled using the Karhunen-Loeve modes of the mirror

4> Target

K-band Agcience = 2,2um

—95 Turbulence

Tip/Tilt

1o = 12,9 cm - seeing = 0.8" @500 nm Correction @ 500 Hz

Lo=25m
lv]| = 10 m.s™?1
@ Wave-front sensor
Visible wavelength Ap_yyrs = 700 nm
Modulation 1,04 = 3%

92 x 92 sub-apertures per pupil
No modal gain compensation

GOAL : Differential piston sensing with a pyramid on an ELT in the visible

Real-time end-to-end AO simulations at ELT scale on multiple GPUs with the COMPASS platform, Ferreira, F. et al, Proc. SPIE 10703 (2018)



|.  THE PROBLEM OF SEGMENTED PUPIL

3. Differential piston AP drifting due to segmented pupil
CLOSED LOOP

OPEN LOOP

pyramid response implies a drifting of AP ...

atmospheric AP to be compensated
Long exposure Strehl Ratio (K) ~ 15% with AP

against ~ 82% if compensated
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Piston compensation at high rate !

Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders, Schwartz, N., arXiv (2018).



Il. PYRAMID RESPONSE TO DIFFERENTIAL PISTON
1. DIFFRACTION LIMITED CONDITIONS
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The effect is visible along the spiders
The pyramid has a sinusoidal response

Unlike other aberrations, the response doesn’t saturate
so the petal will settle around multiples of A

Segmented telescopes co-phasing using a pyramid sensor, Esposito, S. and Devaney, N., (2002).
Laboratory test of a pyramid wavefront sensor, Esposito, S., Feeney, O., and Riccardi, A., Proc. SPIE (2000)



Il. PYRAMID RESPONSE TO DIFFERENTIAL PISTON
2. UNDER PARTIALLY CORRECTED WAVEFRONT
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Il. PYRAMID RESPONSE TO DIFFERENTIAL PISTON
2. UNDER PARTIALLY CORRECTED WAVEFRONT

Diffraction limited resppnse differs from the response 100 /7~ N\
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A telescope-ready approach for modal compensation of pyramid wavefront sensor optical gain, Deo et al, A&A 2019



Il. PYRAMID RESPONSE TO DIFFERENTIAL PISTON
2. UNDER PARTIALLY CORRECTED WAVEFRONT

b
o

o

d)res

Residual phase obtained from
a closed loop AO system

e .,
; —

48
sV

¢res — AP

post processed to remove the
segment pistons contribution

Pyr(AP) [nm]

~__—]

100 //—\\
—— o —
Z h.h'lh #-#.-—d
— _l‘.#"
50
-
/ "-" “h‘
-~ ~
” Y
0o+$7 >
\\
1.\'\ L
h"“'q.”- —#‘— -
=50
—— Pyri{iP) /
== Pyr{AP + @riting) /
=100
== PYr{iP + ¢res) \\.._,.,/
0 100 200 300 400 500 600 700

Input AP [nm]

e




Il. PYRAMID RESPONSE TO DIFFERENTIAL PISTON
2. UNDER PARTIALLY CORRECTED WAVEFRONT

Diffraction limited response differs from the response
around residual phase errors:

- An offset and phase shift
A non zero petal response when no differential piston is

present: entanglement of the petal modes and other
modes signal

|

Key issue leading to AP drift !
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Is there a relation between ¢,..; and AP ?
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lll. MITIGATION STRATEGIES

CAN WE MAKE THE PYRAMID A PETAL SENSOR ?



lll. MITIGATION STRATEGIES
0. By-passing the pyramid « spurious » behavior

PERFECT AP CORRECTION

A MMSE is supposed to be

Long exposure SR = 82%

SLAVING METHOD

Long exposure SR = 68%
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Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders,

Schwartz et al, arXiv 2018
End-to-end simulations for the MICADO-MAORY SCAO mode, Vidal et al, AO4ELT5 (2017).

the « best » reconstructor >

Long exposure SR = 58%
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Analysis of the island effect for ELT MICADO MAORY SCAO mode, Bertrou-Cantou et al, AO4ELT6
(2019)



lll. MITIGATION STRATEGIES
0. By-passing the pyramid « spurious » behavior

PERFECT AP CORRECTION

Long exposure SR = 82%

SLAVING METHOD MMSE
Long exposure SR = 68% Long exposure SR = 58%
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Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders, Analysis of the island effect for ELT MICADO MAORY SCAO mode, Bertrou-Cantou et al, AO4ELT6
Schwartz et al, arXiv 2018 (2019)

End-to-end simulations for the MICADO-MAORY SCAO mode, Vidal et al, AO4ELT5 (2017).



MITIGATION STRATEGIES
1. Quantification of the differential piston error

hypothesis We set aside the A ambiguity problem using an appropriate modulo operator so we get

/1<AP</1
2 2

The reconstruction error is obtained computing
the standard deviation of the 5 differential pistons:

5
1 _
Orec—AP — gz«APi - AP)2>
=1

Statistical average is obtained using 2000 wavefront realizations (4 secs @500 Hz)
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lll. MITIGATION STRATEGIES
2. Valid pixels selection
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lll.  MITIGATION STRATEGIES

. clover
3. A clover modulation
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More time spent on edges and closer to the tip

But non linearity with other modes \/

Compromise between petal sensing

and other modes sensing
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MITIGATION STRATEGIES
3. Aclover modulation

Close to the performance of
randomly applied petal modes
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Il. MITIGATION STRATEGIES
A clover modulation

3.
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Reduction of the circular modulation radius
— better than attempting eccentric ones

Petal modes VS higher order modes correction
— no win-win solution

Whatever the modulation strategy
— the plateau of uncorrected AP persists for
median/bad seeing conditions
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lll. MITIGATION STRATEGIES
4.  Wavelength choice impact

Whatever the strategy is, the plateau persists ...

... only one solution helps : increase the wavelength
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CONCLUSION AND PERSPECTIVES

[ GOAL : Differential piston sensing with a pyramid on an ELT in the visible J

under partially corrected wavefront ~/* N__ at a high rate ~ 500 Hz

WE TRIED :
Low order modes in the wavefront residuals drastically perturb the
- To understand the reason of the differential AP measurements
piston mismeasurement with the pyramid Dig deeper in the modal gain compensation, and probably cross-
correlation of petal modes and other modes signal
- To optimize the modulation in order to get a
good sensitivity for the petal modes AND the ~— ——> Results are not terrific: if an improvement exists, the plateau for
other modes bad atmospheric conditions persists
Only an increase of the wavelength actually helps
- Toincrease the wavelength —_—>

but we are limited by the allocated wavelength range for the WFS
(A <900 nm)

k) A suitable « petalometer » seems to be a more reasonable solution
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Thank you for your attention



