

Preliminary design of the MAORY Calibration and Test Unit (CTU)

Ivan Di Antonio^{1,2}, G. Di Rico², M. Dolci²

¹ University of Roma Tor Vergata
² INAF – Osservatorio Astronomico d'Abruzzo

Wavefront sensing in the VLT/ELT era, 4th edition

- AO corrections over a 60" FoV
- ELT first light instrument
- 8 LGS WFSs (HO corr.)
- 3 NGS WFSs (LO corr. + ref.)
- 2 DMs (Φ≈1m)
- λ range: [0.8 ÷ 2.4] um

Correction performance

- ▶ DL FoV (SCAO) \rightarrow SR > 70%
- > 1' FoV (MCAO) → SR = 50% $\frac{(\text{goal})}{\text{K-band}}$

Wavefront sensing in the VLT/ELT era, 4th edition

Calibration \rightarrow Procedures to remove the instrumental signature from the scientific data

SCIENCE calibrations

(during telescope setup and interval of observations)

MONITORING calibrations

(predictive and preventive maintenance, at a lower rate)

Calibrations in MAORY

- Functionalities check
- AO loop parameters calib.

Wavefront sensing in the VLT/ELT era, 4th edition

Functionalities check

WFS characterization

- Linearity
- Dynamic range
- Faint and bright regimes
- Flatness
- Gain and RON

<u>Pupil check</u>

- Misregistration (motion)
- Rotation
- Illumination uniformity
- Sampling

Optical system check

- Overall transmission
- •

AO loop parameters

<u>NCPA</u>

- Static
- Quasi-static (ΔT)
- Dynamic (vibrations)

IM construction

- LGS only
- LO-Ref only (VIS)
- LO only (IR)
- Combined IM

LGS WFSs calibrations

- Periodic health check
- Reference slopes (HO static NCPA)
- Slope response of each subaperture
- Measurement of unvignetted FoV
- Interaction Matrix
- Pupil position
- Verification and test of WFSing algorithms

NGS (LOR) WFSs calibrations

- Verification of ADC focal plane wobble and pupil run-out
- Field mapping of LOR acquisition stages
- Interaction Matrix of each active element (trombone for focus correction, pupil steering mirror)
- Verification and test of WFSing algorithms

CTU vs. TU

Two different sub-systems, but they walk in parallel...

Wavefront sensing in the VLT/ELT era, 4th edition

MAIN TASK

Providing proper light sources (well-known features) for AO calibrations

REQUIREMENTS

The CTU shall provide:

- A grid of 9x9 NGS sources
 - uniformly distributed within the NGS WFSs technical FoV (60")
 - sufficiently bright to cover the range 5-22 mag (TBC)
 - DL in H-band
- A set of LGS extended (3") sources
 - distributed on 4 asterisms with pupil rotation (0°, 30°, 42°, 56°)
 - asterisms conjugated with specific altitudes (160 km, 120 km, 104 km, 80 km)
 - 8 sources for each asterism
 - 589 nm wavelength
- The possibility to use at the same time both NGS and LGS sources.

... obviously while meeting the opto-mechanical constraints.

Туре	Use	λ	Size	SR	Flux range [phot/s]	Mags range
NGS	LOR wfs (Ref.)	R band	≤ 4 mas (DL@R)	> 85%	$2.10^4 \div 1.10^{11}$	5 ÷ 22
NGS	LOR wfs (LO)	I band	≤ 5 mas (DL@I)	> 85%	$1.10^4 \div 8.10^{10}$	5 ÷ 22
NGS	LOR wfs (LO)	J band	≤ 8 mas (DL@J)	> 85%	$7 \cdot 10^3 \div 5 \cdot 10^{10}$	5 ÷ 22
NGS	LOR wfs (LO)	H band	≤ 10 mas (DL@H)	> 85%	5·10 ³ ÷3·10 ¹⁰	5 ÷ 22
LGS	LGS wfs (HO)	589 nm (V band)	3"	-	5·10 ⁸ ÷ 5·10 ¹⁰	6÷11

Wavefront sensing in the VLT/ELT era, 4th edition

CTU Architecture

Wavefront sensing in the VLT/ELT era, 4th edition

<u>SMU</u>

Source Mask Unit | Composed by two separated sources masks:

- NGS and LGS masks not aligned (shorter axial size) → All sources can be imaged together
- Need of a beam combiner (BC)

<u>FOS</u>

Focusing Optical System | To fulfill the optical requirements (f-number, pupil position, etc.)

<u>BM</u>

Beam combiner | To simultaneously image both NGS and LGS sources.

<u>FM</u>

Folding Mirror | Into the elevator, to inject the flux into the telescope light path.

CTU volume strictly depends on MAORY optical design!

Optical constraints

- Match ELT f-numbers (17.7 @inf. ÷ 20.9 @80km)
- Match ELT FP curvature radii (-9884mm @inf. ÷ -9170mm @80km)
- NGS light sources DL on TFP
- LGS light sources extended (3") on LFPs
- Create a single pupil in the nominal position (-37868mm @inf. ÷ -44782 @80km)

Mechanical constraints

Axial size: 2 meters as total length (TBC)

<u>CONCEPT</u>

LENS 1 (paraxial) | Objective and pupil stop \rightarrow Provides the proper f-numbers LENS 2 (real) | Field lens \rightarrow Provides the proper pupil positions

Merit function operands

- Radial position of sources on FPs
- F-numbers
- Pupil positions

Optimization outputs

- Axial position of LENS 1
- Axial position of sources masks
- Radial position of sources on masks

Wavefront sensing in the VLT/ELT era, 4th edition

Wavefront sensing in the VLT/ELT era, 4th edition

...coming soon...

Wavefront sensing in the VLT/ELT era, 4th edition

CTU Electronics Cabinet

Wavefront sensing in the VLT/ELT era, 4th edition

Steps done

- ✓ Defined CTU concept (Architecture)
- Started (draft of) optical design
- ✓ Started (draft of) mechanical design
- ✓ Started (draft of) electronic design
- ✓ Found COTS
- ✓ Started contacts with companies

Next steps

- Optimization of optical model
- Optimization of mechanical model
- Starting prototyping and test activities for the whole transmission chain (physical sources, fibre splitters, fibres)
- Designing the test apparatus (for the future AIV phase)

- 4) Build the mechanics around this optical design
- 5) Check if CTU design is compatible with MAORY optical design:
 - YES \rightarrow go on
 - NO \rightarrow back to (1)

MANY THANKS TO

L. Busoni (Osservatorio Astrofisico di Arcetri) for his support on optical design

THANKS FOR YOUR ATTENTION

Ivan Di Antonio <u>ivan.diantonio@inaf.it</u>

Wavefront sensing in the VLT/ELT era, 4th edition

Some data from ELT...

Altitude [km]	Focal plane position [mm]	F-number	Scale [mm/arcsec]	Exit Pupil position (from FP) [mm]	FP Curv. Radius [mm]
80	6916	20.98	3.920	44782	-9170
104	5104	20.13	3.763	42972	-9303
120	4345	19.78	3.696	42213	-9391
160	3168	19.23	3.593	41036	-9507
inf	0	17.74	3.316	37868	-9884

Wavefront sensing in the VLT/ELT era, 4th edition

WFS calibration details

Verification and test of LGS WFSing algorithms:

• Verification of RTC centroid computation (output slopes) with respect to computation performed offline based on pixel intensity vectors. Regression test (with camera simulator?);

• Test of detector dark follower algorithm, keeping track of the offset drifts in dark areas;

• Test of LGS WFS spot monitor algorithm, fitting the spot shape and providing elliptical fwhm for trending;

• Test of under-illumination alarm, which freezes the loop when a TBD number of subap. exhibit less flux than the median flux over the subap divided by a TBD value.

□ Verification and test of LOR WFSing algorithms:

• Verification of RTC centroid computation (output slopes) with respect to computation performed offline based on pixel intensity vectors;

• Test of background follower algorithm, keeping track of the background offset away from the PSF core;

• Test of NGS WFS spot monitor algorithm, fitting the spot shape and providing elliptical fwhm to generate weighting maps and for trending;

• Test of under-illumination alarm.