

SOUL MODAL GAIN MACHINE

OPTIMIZATION OF SOUL CONTROL SYSTEM

G. AGAPITO, E. PINNA, C. PLANTET, A. PUGLISI, F. ROSSI

SOUL

SCAO systems

2x FLAO SYSTEMS (S. ESPOSITO, PI) LUCI1 & LUCI 2 (W. SEYFERT, PI) DIFFRACTION LIMITED SPECTRO-IMAGER J-H-K 2x systems feeding LBTI (P. HINZ, PI - ERTEL S.) IMAGER L' M' - FIZEAU INTERFEROMETER - NULLING INTERFEROMETER

SOON FEEDING SHARK-NIR AND V-SHARK

THE SOUL UPGRADE

WFS DETECTOR CCD39 ⇒ OCAM2K

CAMERA LENS $30x30 \text{ sa} \implies 40x40 \text{ sa}$

TIP/TILT MIRROR WFS ELECTRONICS (MAX. FRAME RATE ASM RTC

 $1 \text{KHz} \Rightarrow 2 \text{KHz}$

SUPPORT FOR LARGE # SLOPES CONTROL SW AND HIGHER FRAMERATE

SOUL - OPTIMIZATION

- SOUL, LIKE FLAO, WORKS ON A **WIDE RANGE OF GUIDE STAR MAGNITUDES**, FROM SYRIUS DOWN TO R~18.
- AN ACCURATE **PARAMETERS OPTIMIZATION** IS REQUIRED TO GET THE NOMINAL PERFORMANCE.
- TYPICALLY AO SYSTEMS CHANGE FRAME RATE TO ADAPT TO FLUX REGIME, BUT PWFS CAN ALSO CHANGE PUPIL SAMPLING.
- SOUL APPROACH:
 - EMCCD GAIN, SAMPLING, LOOP FRAME RATE AND FILTER ROOTS CHANGE IN FUNCTION OF DETECTED FLUX (NO FEEDBACK FROM TURBULENCE/VIBRATION CONDITIONS).
 - Modulation amplitude is kept constant at $\pm 3\lambda/D$ (close to optimal, should be proportional to AO residual, but low sensitivity)
 - NUMBER OF CORRECTED MODES IS ALWAYS MAXIMUM AVAILABLE WITH THE USED SAMPLING (CONTROL
 FILTERS HELP HERE).
 - CONTROL FILTERS GAINS ARE OPTIMIZED ON LINE.

SOUL - PARAMETERS IN FUNCTION OF FLUX

Optimization was initially performed in simulation and, then, during system commissioning (Pinna et al. 2015, 2016, 2019).

PARAMETERS:

- SAMPLING (# S.A. = 40/DETECTOR BINNING)
- LOOP FRAME RATE
- EMCCD GAIN
- MODULATION AMPLITUDE
- # CORRECTED MODES
- INTEGRATOR GAIN
- FORGETTING FACTORS (AGAPITO ET AL. 2019)

EXAMPLE OF AO SUPERVISOR CONFIGURATION TABLE

Rmag	flux	bin	freq	emGain	tt
-1.5	1.054E9	1	1700	1	3
0.0	2.65E8	1	1700	1	3
3.5	1.05E7	1	1700	10	
4.5	4.20E6	1	1700	20	3 3
5.5	1.67E6	1	1700	30	
6.5	6.65E5	1	1700	100	3
7.5	2.65E5	1	1700	100	3 3 3 3
8.5	1.05E5	1	1700	100	3
9.5	4.20E4	1	1700	300	3
10.5	1.67E4	1	1700	600	3 3 3
11.5	6.65E3	1	1250	600	3
12.5	2648	1	750	600	3
13.0	1671	1	500	600	3
13.0	1671	2	1000	600	3
14.0	665	2	800	600	3
14.5	420	2	750	600	3
14.5	420	4	1200	600	3
15.5	167	4	500	600	3
16.5	67	4	200	600	3 3 3 3 3 3 3
17.5	26.5	4	100	600	3
18.5	10.5	4	100	600	3

MODAL GAIN OPTIMIZATION

- PREVIOUSLY: TRIAL AND ERROR METHOD ON 3 SETS OF MODES
- THIS OPTIMIZATION IS INSPIRED BY "MODAL CONTROL OPTIMIZATION" FROM GENDRON&LÉNA 1994.
- CHARACTERISTICS OF OUR IMPLEMENTATION:
 - IT WORKS WITH PSEUDO-OPEN LOOP MODES (DESSENNE ET AL. 1998).
 - PLANT IS APPROXIMATED AS PURE DELAY, BUT ANY (MORE COMPLEX) LINEAR MODEL CAN BE USED.
 - IT COMPUTE GAINS OF IIR FILTERS (TYPICALLY A LEAKY INTEGRATOR).

$$\hat{g}_i = \min_{g_i} J_i$$

$$J_{i} = \sum_{f=n/T}^{2/T} \Phi_{i}^{meas}(f) = \sum_{f=n/T}^{2/T} \|W_{i}(z)\|^{2} \Phi_{i}^{pol}(f)$$

ITH GAIN

$$W_i(z) = \frac{1}{1 + \mathcal{H}_i(z)} = \frac{1}{1 + C_i(z)P_i(z)}$$

$$C_i(z) = g_i C_i'(z)$$

CONTROL TF

INPUTS REQUIRED:

- ullet Plant Transfer Function, $P_i(z)$
- Unitary gain IIR Filter, $C_i'(z)$
 - STABLE GAIN RANGE, $[g_i^{min}, g_i^{max}]$ g_i^{min} is typically 0 g_i^{max} depends on $C_i'(z)$ and $P_i(z)$

PYRAMID WFS AND OPTICAL GAIN (1)

PYRAMID WFS IS NON-LINEAR
 WAVEFRONT SENSOR WHERE THE
 MEASURED SIGNALS DEPEND ON THE
 QUALITY OF THE ACHIEVED AO
 CORRECTION ⇒ AN ADDITIONAL
 PARAMETERS IS REQUIRED TO GET THE
 PLANT MODEL, THE PWFS OPTICAL
 GAIN:

$$P(z) = \frac{1}{\hat{\gamma}_{opt}} z^{-d}$$

But ...

PYRAMID WFS AND OPTICAL GAIN (2)

- In 2015 we developed for FLAO+LUCI (Esposito et al. 2015) A NCPA COMPENSATION TOOL THAT COMPRISES PWFS OPTICAL GAIN ESTIMATION.
- THEN, WE USE THE SAME ALGORITHM TO GET A OPTICAL GAIN COMPENSATED PWFS AND SO WE REVERT THE PLANT MODEL TO A PURE DELAY:

PLANT TRANSFER FUNCTION

HENCE, WE MODEL PLANT AS $P_i(z) = z^{-d_i}$, so a pure delay. Delay d_i is the sum of:

- INTEGRATION TIME (0.59 10Ms)
- DETECTOR READ-OUT TIME (ROI 120x120pixel \Rightarrow 0.24 0.17ms)
- RTC LATENCY (0.50MS, 0.06MS DURING DETECTOR READ-OUT)
- HALF OF DM SETTLING TIME (\sim 0.60 1.00ms)

WE COMPUTE IT WITH NOMINAL VALUES AND WE VERIFY IT FROM CLOSED LOOP DATA ESTIMATING THE TRANSFER FUNCTION NATURAL FREQUENCY.

Note: delay changes modally because DM settling time is not equal for each mode, low order modes are slower (Riccardi et al. 2008).

MGM – OTHER CHARACTERISTICS

GAIN APPLIED IN THE RTC AT STEP k:

$$g_i^{RTC}(k) = (1 - \rho)g_i^{RTC}(k - 1) + \rho\alpha\hat{g}_i(k)$$

- ROBUSTNESS FOR DEALING WITH MODEL ERRORS (SAFETY MARGINS AND LIMIT INCREMENT RATE):
 - Maximum gain, g_i^{max} , is reduced from theoretical one by 5%
 - A factor lpha (lpha < 1, typically lpha = 0.9) reduces the Gain which minimizes the cost function, \hat{g}_i
 - GAIN INCREMENT LIMITED W.R.T. PREVIOUS STEP: FACTOR ho (ho < 1, TYPICALLY ho = 0.5)
- MGM AND PWFS OPTICAL GAIN COMPENSATION ALGORITHM ARE COORDINATED:
 - Updates are synchronized
 - OPTICAL GAIN VARIATION (NEW OVER PREVIOUS ONE) IS USED TO RESCALE FINAL FILTERS GAIN VECTOR
- WE ADD A SUPERVISOR THAT MONITORS THE CLOSED LOOP AND, FOR EXAMPLE, REDUCES THE FILTERS GAIN IF THE DM FORCES SATURATE TOO OFTEN.

DAY TIME RESULTS

20190409 40x40s.a., 1kHz, seeing 0.6", R=11.9

ON SKY RESULTS

20190709 40x40s.a., 1.2kHz, R=11.5

SR(FEII)=61% SR(FEII)=57% (NO LUCI NCPA COMPENSATION)

127HZ VIBRATION

- DURING OUR TEST WE NOTE A BI-STABLE BEHAVIOR OF TIP/TILT GAIN, OSCILLATING BETWEEN TWO VALUES SEPARATED BY ~20%.
- When TT gain raise we see a strong vibration at $127Hz \implies$ we found a control-structure-Interaction
- WE VERIFIED THAT THIS CAN HAPPEN FOR FRAME RATES BETWEEN 700 AND 1700Hz
- FLAO WAS NOT ABLE TO EXCITE IT BECAUSE CLOSED LOOP BANDWIDTH IS SIGNIFICATIVE LOWER WITH NATURAL FREQUENCY AROUND 80Hz

TT GAIN

1. 0.188, 0.242

2. 0.231, 0.276

127HZ VIBRATION

- DURING OUR TEST WE NOTE A BI-STABLE BEHAVIOR OF TIP/TILT GAIN, OSCILLATING BETWEEN TWO VALUES SEPARATED BY ~20%.
- When TT gain raise we see a strong vibration at $127Hz \implies$ we found a control-structure-Interaction
- WE VERIFIED THAT THIS CAN HAPPEN FOR FRAME RATES BETWEEN 700 AND 1700Hz
- FLAO WAS NOT ABLE TO EXCITE IT
 BECAUSE CLOSED LOOP BANDWIDTH IS
 SIGNIFICATIVE LOWER WITH NATURAL
 FREQUENCY AROUND 80Hz

Mainly Tip Tilt, but a bit of 2^{ND} and 3^{RD} radial order

127HZ VIBRATION

- During our test we note a bi-stable behavior of Tip/Tilt gain, oscillating between two values separated by ~20%.
- When TT gain raise we see a strong vibration at $127Hz \implies$ we found a control-structure-Interaction
- WE VERIFIED THAT THIS CAN HAPPEN FOR FRAME RATES BETWEEN 700 AND 1700Hz
- FLAO WAS NOT ABLE TO EXCITE IT BECAUSE CLOSED LOOP BANDWIDTH IS SIGNIFICATIVE LOWER WITH NATURAL FREQUENCY AROUND 80Hz

127HZ VIBRATION

- DURING OUR TEST WE NOTE A BI-STABLE BEHAVIOR OF TIP/TILT GAIN, OSCILLATING BETWEEN TWO VALUES SEPARATED BY ~20%.
- When TT gain raise we see a strong vibration at $127Hz \Rightarrow$ we found a control-structure-interaction
- WE VERIFIED THAT THIS CAN HAPPEN FOR FRAME RATES BETWEEN 700 AND 1700Hz
- FLAO was not able to excite it because closed loop bandwidth is significative lower with natural frequency around 80Hz

127HZ VIBRATION CONTROL SOLUTION

- WE DESIGN, BY MEANS OF A NUMERICAL OPTIMIZATION WITH STABILITY CONSTRAINT (AGAPITO ET AL. 2012), SOME IIR FILTERS FOR TIP/TILT MODES WITH LOW CLOSED LOOP TF AMPLITUDE AT 127Hz AND "GOOD" REJECTION OF TYPICAL LBT VIBRATIONS (MAIN PEAK AT ~10Hz, KULCSAR ET AL. 2012).
- WE GET 4 FILTERS FOR 1700Hz, 1350Hz, 1000Hz AND 750Hz, FULLY COMPATIBLE WITH SYSTEM RTC AND MGM.
- GAIN VECTOR CAN BE CHANGED ON THE FLY, WHILE FILTERING IS FIXED DURING AO OPERATIONS.

1700Hz filter

127HZ VIBRATION CONTROL SOLUTION

- WE DESIGN, BY MEANS OF A NUMERICAL OPTIMIZATION WITH STABILITY CONSTRAINT (AGAPITO ET AL. 2012), SOME IIR FILTERS FOR TIP/TILT MODES WITH LOW CLOSED LOOP TF AMPLITUDE AT 127Hz AND "GOOD" REJECTION OF TYPICAL LBT VIBRATIONS (MAIN PEAK AT ~10Hz, KULCSAR ET AL. 2012).
- WE GET 4 FILTERS FOR 1700Hz, 1350Hz, 1000Hz AND 750Hz, FULLY COMPATIBLE WITH SYSTEM RTC AND MGM.
- GAIN VECTOR CAN BE CHANGED ON THE FLY, WHILE FILTERING IS FIXED DURING AO OPERATIONS.

1700Hz filter

127HZ VIBRATION CONTROL SOLUTION TEST

- FIRST DAYTIME TEST WAS SUCCESSFUL:
 - TT JITTER 8MAS RMS (VS 24MAS)
 - SR(H BAND) TO 70% (VS 40%, LUCI NCPA NOT CORRECTED)
- Next week these filters will be used during nighttime commissioning
- MGM SW UPDATED TO MANAGE IIR FILTERS AND WILL BE TESTED SOON

1700Hz FILTER
DAY TIME TEST

CONCLUSION

Long exp = $40 \times 2.0s$ (NO shift &add)

ON SKY (2019/07/09 06:40:42)

G 205-43 R13.5 S=0.93''

> 20x20 s.a. 870Hz 250 modes

SPHERE NOMINAL R13.5@0.6'' SR(H)=48.5%

SIMUL.: R13.5, S=0.93'', AVE VIBR. SR = 53% (FLAO 25%)

