

MAORY LGS WFS trade-Off: Truncation and Regularization, and a few tricks

Christophe Verinaud,

Sylvain Oberti, Miska Le Louarn, Pierre-Yves Madec, Michel Tallon Guido Agapito, Cedric Plantet, Lorenzo Busoni, Simone Esposito

What is the best size for the FOV of the sub-apertures of a LGSWFS ?

I asked my bro-law who knows everything, this is his answer:

ARCSEC

.

NOT SO BAD ! JUST WRONG BY A FACTOR OF 2 OR SO...

WFS in the ELT/VLT era, Florence, 28/10/2019

== 84 🛌 += 84 == 88 == 60 📼 🖬 🛨 💥 🛍

We want computation time < 10000 years With Q-OCTOPUS

\rightarrow Quantization of FOV

We want computation time < 10000 years With Q-OCTOPUS

\rightarrow Quantization of FOV

WFS in the ELT/VLT era, Florence, 28/10/2019

MAORY simulation case

Target SR(K) = 60% for simulations (in center of FOV)

- 6 LGS WFS @ 45" radius
 - Flux=470 photons / sub-aperture (percentile 90%)
- 2 Post-Focal DMs
- LISA \rightarrow 10x10 pixels / sub-aperture
 - > RON=3
- 3 NGS WFSs looking at bright stars
- 35 layers profile, r0=0.157m @ zenith L0=25 m
- Turbulence profile:
 - Cn2 mean
 - > Cn2 bad (percentile 90%)
- Na profile:
 - Na Mean: Multi-Peak
 - Na Bad: Top-Hat-Peak,
- POLC-MMSE reconstruction 6 layers : OCTOPUS+FRIM

When Na profile varies (and turbulence WF=0) A LGS SH in the Telescope sees only Tip-Tilt and Defoc

DIAM_TEL

Each point **j** with intensity I_j in LGS cigare is seen from M1 as Wavefront with only 3 components $Z1_i=Tip_i$

Z3_j=Focus_j

The LGS SH measures the ponderated linear combination of the $3 Zi_j$

Only TT and Defoc = F(I_{Na}) AND THOSE ARE FILTERED!

WF(I_{Na}) = 1/N
$$\sum_{j=0}^{N} \sum_{i=1}^{3} I_{j} Zi_{j}$$

WFS in the ELT/VLT era, Florence, 28/10/2019

Q-Static Bias: Single LGS Reconsted WF for Flat WF

Gentle Na profile

WFS in the ELT/VLT era, Florence, 28/10/2019

Extreme Na profile (depends from which perspective)

WFS in the ELT/VLT era, Florence, 28/10/2019

Binary windows to damp RON

Wthre = 0.5 % Wthre = 1 % Wthre = 2 % Binary windows for most elongated spots in function of parameter Wthre Binary windows for NON elongated spots in function of parameter Wthre

(User's) Choice of Truncated sub-apertures: **Projection Regularization** (tG: threshold, Gauss. model)

Parameters tuning recipe:

- 1. Noise variance: $\boldsymbol{\sigma}_n$ uniform in P
- 2. Elongation: β non uniform in P
- 3. Elongation discard threshold: *tG*

WFS in the ELT/VLT era, Florence, 28/10/2019

$$[\mathbf{C}_n]_{2\times 2,\text{cut}}^{-1} = \frac{\eta}{\sigma_n^2 \beta^2} \begin{pmatrix} \beta_2^2 & -\beta_1 \beta_2 \\ -\beta_1 \beta_2 & \beta_1^2 \end{pmatrix}$$

 C_n : Measurements covariance

Michel Tallon and Clementine Bechet, 2009

OCTOPUS UNITS

- σ_n : noise on slopes (no elong): nm
 - NPH,RON, FWHM (transverse)
- βmax:elong. maxkm
 - > 10 km → ~10 arcsec

tG

- ➢ tG such X% sub-ap truncated
- (note real Values in plots are in other units that are unprocatical)

tG / X%

(User's) Choice of Truncated sub-apertures: **Projection Regularization** (tG: threshold, Gauss. model

Parameters tuning recipe:

- 1. Noise variance: $\boldsymbol{\sigma}_n$ uniform in P
- 2. Elongation: β non uniform in P
- 3. Elongation discard threshold: *tG*

WFS in the ELT/VLT era, Florence, 28/10/2019

$$[\mathbf{C}_n]_{2\times 2,\mathrm{cut}}^{-1} = \frac{\eta}{\sigma_n^2 \beta^2} \begin{pmatrix} \beta_2^2 & -\beta_1 \beta_2 \\ -\beta_1 \beta_2 & \beta_1^2 \end{pmatrix}$$

 C_n : Measurements covariance

Michel Tallon and Clementine Bechet, 2009

OCTOPUS UNITS

- σ_n : noise on slopes (no elong): nm
 - > NPH,RON, FWHM (transverse)
- βmax: elong. maxkm
 - ➤ 10 km → ~10 arcsec

tG

- on truncated
- tG such X% sub-ap truncated
- (note real Values in plots are in other units that are unprocatical)

tG / X%

Optimising tG:

Select Sub-apertures on which to apply the projection regularization

WFS in the ELT/VLT era, Florence, 28/10/2019

Optimization of tG

Truncation induces dynamical noise and static bias: tG fixes both...

FOV=10, Na Multi-Peak, REFs (bias calibrated)

NPH=470. FOV=10, FWHMt=1.1, dH=10.e3, NOISE term =60 NM NPH=470, FOV=10, FWHMt=1.1, dH=10.e3, NOISE term =60 NM REF=0 0.8 0.1 **Dynamical Noise** 0.6 Robustness SR(K) SR(K) Static Bias Less sub-ap with proj. regularization (¥) 25 0.4 (×) 0.4 More sub-ap with Attention: 2 figures 0.2 proj. regularization 0.2 not at same scale. This is REFs tG/50% 0.0 0.0 0.2 0.3 0.4 0.0 0.00 0.05 0.10 0.15 0.20 THRESHOLD S THRESHOLD S tG/75% tG/50% tG tG tG/80% tG/66%

FOV=10. SR Performance in function of tG (threshold S). Optimum value between 0.1 and 0.01 [50%-75%]. BETA=10. KM, NOISE=60 nm. REFs.
WFS in the ELT/VLT era. Florence. 28/10/2019

FOV=10. W1%. SR Performance in function of tG (threshold S). Optimum value between 0.05 and 0.001 [66%-80%] . BETA=10. KM, NOISE=60 nm. **REF0.**

FOV=10, Na Multi-Peak, REF0 (bias NOT calibrated)

Performance: simulations

- With Regularisation values in table below:
- Determined for for NPH=470, RON=3
- **σ**_n and **β** fixed analytically and KEPT CONSTANT
- **tG** can be put to 100% and KEPT CONSTANT
 - > →Simulations show a Loss of SR < 2% (worst case)

For all the following simulations results:

Binary Windowing Wthre=1% fixed

REF0 (bias NOT calibrated)

	FOV=10 arcsec	FOV=15 arcsec	FOV=20 arcsec
σ _n	50 nm	60 nm	80 nm
β _{max}	10 km	10 km	10 km
tG %	66%	66%	0%

Performance: LGS flux

REF0 (bias NOT calibrated)

Performance, Impact of Bad Na Profile

WFS in the ELT/VLT era, Florence, 28/10/2019

+ES+ 0 +

Performance: impact of bad Na Profile

Performance: impact of bad Na Profile

Conclusions / Recommendations

- Main Result: Fix all the regularization parameters once for all to a "reasonable value" and you are near optimality in 90% of time
- If you wish to do better then I recommend:
 - $> \sigma_n$: update it if you want to be optimal at low flux
- Be careful with spot lateral width sampling: **non-linearity**
- **On the Quasi-Statics**: Regularization plays an (too?) enormous role...
- ➡ → Having no Quasi-Static Bias at all would be certainly an asset for Non Common Path Aberrartions compensation

Towards Decoherence of MAORY

$| FOV \rangle = \alpha | 10 \rangle + \beta | 15 \rangle + \gamma | 20 \rangle$ arcsec

- FOV = 10 arcsec
 α ↑: Good at low flux Spot well sampled
 α ↓: Strong Static Bias Needs Regularization Not good at adverse Na profiles
 FOV = 20 arcsec γ ↑: No Static Bias No need of Regularization Performing in All Conditions
 γ ↓: Needs spot shaping
 - FOV = 15 arcsec
 - \blacksquare β measures the SWISS probability

Reject RON with windowing

10x10: lots of pixels with big leverage on slopes

→ Binary Windows:

- > Pixels with No signal $\rightarrow 0$ (threshold few ~1-2 %)
- > Add pixels with value 1 to Centro-Symmetrize the Window

Idea: Fixed Windows adapted to all conditions

- > Spot width, Na profiles, Jitter, NCPA offsets...
- If needed some borderline pixels can be Weighted

REFs: Bias Calibrated REF0: Bias NOT Calibrated W1%: Bin. Window Thre=0.01

 SR (W1%, REF0):
 66%

 SR(THRE=9, REFs):
 66%

 SR(THRE=9,REF0):
 47%

Performance: Windowing VS Thresholding

Iterations

Solid line in bold: Performance of FOV=20 with REF0 and windowing W1%. Dashed line: REF0 and no thresholding (RON not attenuated). Doted-Dashed: REF0 and application of thresholding (no zero BIAS hurts). 3-Dotted Dahsed: Classical threshold with Bias calibrated.

SOLID LINE: Windowing W1%, REF0

All other lines are without windowing

The only case that performs as good as windowing is Thresholding+ REFs

Other curves' performance is either dominated by RON or by the BIAS

\rightarrow Windowing is used for the rest of the study

WFS in the ELT/VLT era, Florence, 28/10/2019

Mettre def de REFs REF0

SR in function of angular separation. CN2 mean. FOV=20 NPH=470, RON=3, W1%, Optimum regularisation parameters (Table 1). Solid line: profile NA1200. Dashed line: Profile Top-Hat-Peak

SR in function of angular separation. CN2 mean. FOV=15 NPH=470, RON=3, W1%, Optimum regularisation parameters (Table 1). Solid line: profile NA1200. Dashed line: Profile Top-Hat-Peak.

Spot enlargement to reduce non-linearity

- FWHMt = Lateral LGS spot size in Sodium layer at uplink
- Optimal reconstructor as defined later
- For the rest of the study the LGS Spot is enlarged such that sampling is 1 pixel / FWHMt

Optimization of tG: Threshold ?

• tG can also "fix" Static Bias due to Thresholding but needs to regularize harder

FOV=10. **W1%**. SR Performance in function of tG (threshold S). Optimum value between 0.05 and 0.001 [66%-80%] . BETA=10. KM, NOISE=60 nm. **REF0**.

FOV=10. SR Performance in function of tG (threshold S). Optimum value between 0.05 and 0.001 [66%-80%] . BETA=10. KM, NOISE=60 nm. **REF0. THRESHOLD=9**.