

The NGS AO system for GMT: Performance analysis and simulations

Presented by

Fernando Quirós Pacheco GMT Adaptive Optics Scientist

Wavefront Sensing in the VLT/ELT era, 4th edition, Firenze, 28-30 Oct, 2019

Outline

- GMT design
- **GMT** Adaptive Optics architecture
 - Adaptive Secondary Mirror
 - Wavefront sensors suite
- Natural Guide-star AO (NGAO)
 - Simulations and performance
 - Active Optics / Phasing / Adaptive Optics interactions
- Summary and Conclusions

The Giant Magellan Telescope (GMT)

- 24.5m diameter primary aperture
 - 362 m² collecting area
 - M2 conjugated at ~160 meters
- Doubly segmented design:
 - 7 x 8.4 m M1 segments (largest practical segments)
 - 7 x 1.1 m M2 segments
 - Segment gaps:
 - 40.8 cm between central and outer segments
 - 34.5 cm between outer segments

- The GMT AO uses an Adaptive Secondary Mirror (ASM) and a standardized set of wavefront sensors:
 - Acquisition, Guiding, and Wavefront Sensing System (AGWS)
 - Natural Guide Star WFS (NGWS)
 - Laser Tomography WFS (LTWS)

Replicated for each instrument

On-Instrument WFS (OIWFS)

- The GMT AO uses an Adaptive Secondary Mirror (ASM) and a standardized set of wavefront sensors:
 - Acquisition, Guiding, and Wavefront Sensing System (AGWS)
 - Natural Guide Star WFS (NGWS)
 - Laser Tomography WFS (LTWS)
 - On-Instrument WFS (OIWFS)

Replicated for each instrument

- The GMT AO uses an Adaptive Secondary Mirror (ASM) and a standardized set of wavefront sensors:
 - Acquisition, Guiding, and Wavefront Sensing System (AGWS)
 - Natural Guide Star WFS (NGWS)
 - Laser Tomography WFS (LTWS)
 - On-Instrument WFS (OIWFS)

Replicated for each instrument

- The GMT AO uses an Adaptive Secondary Mirror (ASM) and a standardized set of wavefront sensors:
 - Acquisition, Guiding, and Wavefront Sensing System (AGWS)
 - Natural Guide Star WFS (NGWS)
 - Laser Tomography WFS (LTWS)
 - On-Instrument WFS (OIWFS)

Replicated for each instrument

- The GMT AO uses an Adaptive Secondary Mirror (ASM) and a standardized set of wavefront sensors:
 - Acquisition, Guiding, and Wavefront Sensing System (AGWS)
 - Natural Guide Star WFS (NGWS)
 - Laser Tomography WFS (LTWS) Replicated for each instrument
 - On-Instrument WFS (OIWFS)
- In Natural Guide Star AO (NGAO) mode:
 - AGWS controls telescope pointing, collimation, M1 figure
 - AGWS also provides initial phasing to 50 nm RMS
 - NGWS controls on-axis WFE, including segment phasing
 - OIWFS controls changing non-common path errors, M3 tip-tilt
- In the Laser Tomography AO (LTAO) mode:
 - Analogous, except that LTWS does not control segment phasing

GMT Adaptive Optics Architecture Acquisition, Guiding, and Wavefront Sensing System (AGWS)

Function	WFS type	Description	Band / Detector
Acquisition	30"x30" Imager	Establishes and updates the pointing of the telescope at each slew.	R+I band Princeton ProEM- 1KBX3
Active Optics WFS	24x24 SH 48x48 SH	Provides feedback for collimation and M1 figure control.	
GLAO WFS		Provides ground layer turbulence measurement using 4 off-axis NGS	
Segment phasing Sensing (SPS)	Dispersed Fringe Sensor	Measures piston error between different M1/M2 segment pairs.	<i>J band</i> C-Red One

WFS spot pattern 48x48 SH

GMT Adaptive Optics Architecture Acquisition, Guiding, and Wavefront Sensing System (AGWS)

Function	WFS type	Description	Band / Detector
Acquisition	30"x30" Imager	Establishes and updates the pointing of the telescope at each slew.	R+I band
Active Optics WFS	24x24 SH 48x48 SH	Provides feedback for collimation and M1 figure control.	Princeton ProEM- 1KBX3
GLAO WFS		Provides ground layer turbulence measurement using 4 off-axis NGS	
Segment phasing Sensing (SPS)	Dispersed Fringe Sensor	Measures piston error between different M1/M2 segment pairs.	<i>J band</i> C-Red One

GMT Adaptive Optics Architecture Natural Guide-star Wavefront Sensing System (NGWS)

Main channel image (flat wavefront, 10 λ/D modulation)

ANT MAGELLAN

- Designed by INAF-Arcetri (PI: S. Esposito)
- 92×92 pyramid WFS
- 6-element ADC, pupil re-rotator, modulation mirror
- 2 wavelength channels to extend phasing capture range
- Uses two FirstLight OCAM2 cameras

NGAO performance simulations The GMT Integrated Model

- The GMT integrated model is used to derive requirements, test algorithms, and verify end-to-end telescope performance
- The integrated model includes :
 - Structural performance of mount and optics (using Craig Bampton state space reduction)
 - Models of actuators and drives
 - Fast (GPU) ray-tracing engine for on-axis / offaxis wavefront propagation simulation through atmosphere + telescope.
 - Telescope and WF control loops
- Disturbances (windshake, thermal, vibration, optical turbulence) are modeled independently

NT MAGELLAN

NGAO performance simulations NGAO modal control basis

Global KL modes (NGWS PDR 2013)

Segment KL modes (currently being considered)

Seg #1, Mode #1

Seg #1, Mode #2

. . .

- Provides direct access to segment pistons and segment tilts
- Allows for AO operation with a reduced number of segments
- Allows independent optical calibration of modes

NGAO performance simulations Signal masking for segment tilt and up

 Signal masks remove sub-apertures of adjacent segments that do not have useful information (just propagate measurement noise):

- Masks for segment KL modes (tip-tilt and up):
 - Note: gaps have been deliberately removed (questionable choice).

GIANT MAGELLAN

NGAO performance simulations Signal masking for segment piston modes

 Signal masks remove sub-apertures of adjacent segments that do not have useful information (just propagate measurement noise):

- Masks for segment piston:
 - Note: selected sub-apertures across the gaps and little further.

GIANT MAGELLAN

NGAO performance simulations Interaction matrix calibration

- Interaction matrix between ASM and pyramid WFS:
 - ASM control modes: 600 KL modes per segment
 - Pyramid WFS:
 - modulation of ±2 λ/D (circle sampled with 24 points)
 - Signal masks applied accordingly to interaction matrix.
 - Segment piston of central segment NOT controlled (i.e. acts as the reference for differential piston of outer segments).

NGAO performance simulations Median turbulence conditions (0.63" seeing)

NGAO system

- Adaptive Secondary Mirror:
 - 600 KL modes / segment
- Pyramid WFS:
 - 92 x 92 sub-apertures
 - Modulation: $\pm 2\lambda/D$
 - GS mag(R) = 10
 - EMCCD: RON 1 e- RMS; √2 excess noise.
- Temporal controller:
 - Sampling rate: 1kHz
 - Total time delay: 2 frames
 - Simple integrator: g=0.5

Atmospheric turbulence

- 7 layers median profile
 - $r_0 = 15 \text{ cm} @ 30^\circ \text{ zenith angle.}$
 - τ_0 = 3.5 ms; L_0 = 25 m.

NGAO performance simulations Performance vs. seeing

- Segment piston "ejections" occur when seeing conditions degrade (NGWS PDR 2013 results):
- WFS in R+I band
- Well optimized modal IIR controller

- Alternative options to improve segment piston rejection currently under evaluation:
- WFS at different wavelengths
- Simple integrator controller

MAGELLAN

NGAO performance simulations Adaptive Optics / Active Optics / Phasing interactions

- M1 active optics / phasing residuals will be be compensated by the ASM.
 - OK for on-axis performance but degrades performance in the field of view.
- Active Optics / Phasing control strategy in AO mode:
 - Combines the AGWS SH & DFS measurements into a single reconstructor.
 - Modes calibrated are:
 - M1 segment rigid-body motions;
 - 2. Up to 27 M1 bending modes per segment;
 - All modes calibrated with AO loop closed.

 $R_{M} = M_{M}^{\dagger} = \begin{bmatrix} \begin{pmatrix} 1 \\ \overline{G_{DFS}} \end{pmatrix} M_{DFS} \\ \begin{pmatrix} 1 \\ \overline{G_{SHS}} \end{pmatrix} M_{SHS} \end{bmatrix}^{\dagger} \begin{array}{c} M_{DFS}: \text{ AGWS DFS Interaction matrix} \\ M_{SHS}: \text{ AGWS SH Interaction matrix} \\ G_{DFS}: \text{ norm of } M_{DFS} \text{ matrix} \\ G_{SHS}: \text{ norm of } M_{SHS} \text{ matrix} \end{array}$

NGAO performance simulations Adaptive Optics / Active Optics / Phasing interactions

- M1 Active Optics residuals: M1 rigid body motions + 5 µm RMS of M1 figure errors
- Note: no atmospheric turbulence simulated.

All M1 figure errors (bending modes) converge to zero

NGAO performance simulations Adaptive Optics / Active Optics / Phasing interactions

- M1 Active Optics residuals: M1 rigid body motions + 5 µm RMS of M1 figure errors
- Note: no atmospheric turbulence simulated.

Field-dependent segment piston errors are removed.

Conclusions and Future Work

Conclusions:

- Stable operation of NGAO loop in 95% seeing conditions (< 1.1 arcsec seeing).</p>
- Convergence of AO / Active Optics / Phasing loops demonstrated with high-fidelity simulations

Future work:

- Evaluating alternative 2nd NGWS channel designs.
- Performance evaluation including telescope dynamics and wind buffeting disturbances.
- Evaluating large NCPA compensation with the NGWS.