

The self-coherent camera temporally modulated

- a satisfactory paradox -

P. Martinez¹

¹Laboratoire Lagrange – Observatoire de la Côte d'Azur

Wavefront measurements from focal plane intensity

Technique

Wavefront sensing

Conventional wavefront sensors

Measure aberrations using light ahead of a coronagraph

- Common-path wavefront sensors
- (i) Exploit the post-coronagraphic image
- (ii) or the light diffracted by the focal plane mask to infer aberrations to the coronagraphic image

Wavefront sensing using science camera:

- avoids non-common path errors,

- wavefront measurements performed at the same wavelength as science acquisition.

Many approaches have been developed to recover wavefront measurements from focal plane intensity, and fall into two categories:

- temporal modulation
- spatial modulation

Modal WFS 100%no yes LDFC 100%no yes MEDUSAE < 100% no no COFFEE < 100% yes no QACITS 100%no yes SCC 100%yes yes Pairwise probing < 100% yes no Speckle nulling < 100% yes yes Phase retrieval < 100% no yes Kernel phase < 100%yes yes 100%Phase shifting interferometry no yes Phase sorting interferometry 100%no yes

Modulation used

Real time

Jovanovic et al. SPIE 2018

Science duty cycle

The Self-Coherent Camera – SCC

Spatial modulation technique

- ➢ Basic principles
- (i) Rely on continuous interference between the speckle field and permanent probe,
- (ii) decompose the focal plane image into coherent and incoherent components,
- (iii) coherent part drives the control of the electric field,
- (iv) incoherent part contains astrophysical signal (e.g. planet).

➢ SCC in practice

Uses a small off-axis reference hole in the Lyot stop of coronagraph (reference channel) The electric field in the science image is spatially modulated w/ fringes A single image is necessary to estimate the electric field, **science duty cycle is 100%** Electric field is:

- retrieve based on the analysis of the Fourier transform of the science image
- minimized to create a dark hole by deformable mirror actuation

Baudoz et al. 2006 - Galicher et al. 2008

SCC – General formalism

Wavefront sensing in the VLT/ELT era, 4th edition

Baudoz et al. 2006 - Galicher et al. 2008

SCC – General formalism

Wavefront sensing in the VLT/ELT era, 4th edition

Baudoz et al. 2006 - Galicher et al. 2008

SCC – [few] Laboratory and on-sky results

SCC – Reference properties and limitations

SCC – Reference properties and limitations

SCC – Breaking the rules

The ideal SCC design

> SCC theory dictates that $\beta > 1.0$

The reference channel cannot be placed in the vicinity of the pupil channel The maximum diffracted energy from the coronagraph is in the vicinity of the pupil channel

\succ SCC with $\beta = 0.4$

It would:

- solve the S/N issue for long-time exposure measurements (quasi-static aberrations),
- make possible short-time exposure measurements (fast-living aberrations),
- relax the requirement on the fringe sampling on the detector (fringes would be larger),
- suppress the optical design constraint of the downstream optics (a sever shortcoming).

Fast-modulated self-coherent camera

General principle

Two SCC images are recorded sequentially

- One image with the reference channel opened (fringes)
 - The three peaks in the OTF overlap
- One with the reference channel closed (no fringes)
 - > Only the central peak is present in the OTF
- > recovering and isolating the lateral peak is possible
- Both images are subject to same aberrations and noises (same detector pixels)

Motorized Lyot stop

A modulator on the reference hole to close/open the channel at an adequate rate considering integration time and speckle lifetime

Fast-modulation Fourier filtering algorithm - Nothing but simple

Wavefront sensing in the VLT/ELT era, 4th edition

Martinez A&A (2019)

Fast-modulated self-coherent camera

The SPEED testbench

a playground to test the fast-modulated SCC

SPEED facility

High-contrast imaging at small IWA

- ELT pupil and constraints ٠
- Multi-DM wavefront control and shapping
- Small IWA coronagraph (PIAACMC)

The visible path of the bench is dedicated to

- Cophasing the primary mirror (SCC-PS) \geq Janin-Potiron et al. A&A 2016
- Compare cophasing (fine phasing) sensors \geq

The SCC and fast-modulated SCC will be tested for cophasing optics

The SPEED testbench

a playground to test the fast-modulated SCC

SPEED facility

High-contrast imaging at small IWA

- ELT pupil and constraints ٠
- Multi-DM wavefront control and shapping ٠
- Small IWA coronagraph (PIAACMC) ٠

The NiR path of the bench is dedicated to

- Wavefront shapping (2-DMs) \geq
- High-contrast imaging \geq

Conclusion

- \succ SCC with unauthorized β values are possible, with major advantages:
- versatility by accessing short- and long-time exposure measurements
- relax the requirement on the fringe sampling on the detector (fringes would be larger),
- suppress the optical design constraint on the downstream optics for new instruments,
- easy installation in existing instruments,
- make the SCC compatible with any type of coronagraph.

> ...but the fast-modulated SCC adds some *temporal modulation* where *spatial modulation* was the key point...

Likely a satisfactory paradox in many situations, e.g.:

- PIAACMC unlikely compatible with conventional SCC
- Conventional SCC and existing instruments are not compatible by optical design

