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Introduction

General relativity is a well tested and motivated
theory.

An ubiquitous prediction of general relativity is
the presence of singularities: general relativity
predicts its own failure!

It is reasonable to assume that quantum
gravity will somehow prevent the formation of
singularities.
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Regular black holes

A very conservative possibility involves departures from general
relativity only close to the would be singularity

ds2 = −e2φ(t,r)F (t, r)dt2 +
1

F (t, r)
dr2 + r2dΩ2

Asymptotically

F (t, r) −→ 1− 2M

r
, φ −→ 0.

To avoid the singularity, as r → 0;

F (t, r) = 1 +O(r3).

The horizon condition is F (t, r) = 0.
I There is an even number of horizon.
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Regular black holes

Price law for the dumping of the perturbations:
[ Price 1972; Gundlach, Price, Pullin 1994; Dafermos, Rodnianski 2005]

min ∝ v−γ

Behavior of FB(r0) :

dr

dv
=
e−φ(r)F (r)

2
=⇒ dv =

2dr

e−φ(r−)F ′(r−)(r − r−)
+o(r−rH).

Integrating this equation

|FB(r0(v)|u=u0)| ∝ e−|κ−|v.

Putting these together,

mA ∝ v−γe|κ−|v.

See R. Carballo Rubio, F.D.F., S.Liberati, C. Pacilio, M. Visser, 10.1007/JHEP07(2018)023
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Wormholes

For simplicity let us focus on Morris–Thorne traversable wormholes
[Morris, Thorne (1988)]

ds2 = −e−2φ(x)dt2 + dx2 + r2(x)dΩ2 rmin 6= 0,

where x ∈ (−∞,+∞). Asymptotic flatness requires

lim
x→±∞

r(x)

|x|
= 1, lim

x→±∞
φ(x) = Φ± ∈ R.

This geometry correspond to flat spacetime far form the throat. It
can be generalized to be asymptotically Schwarzschild [Visser(1997)], or
to include rotation [Teo (1998)].

We are not going to deal with the effect of the matter maintaining
the object.
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Bouncing geometries

A more radical possibility involves a transition between a black hole to
a white hole state.

It is easy to write down a metric that describe such
object. Using Painlevé-Gullstrand coordinates:

ds2 = −dt2+[dr−f(r, t)v(r) =
√
rs/rdt]2+r2dΩ2,

where f(t, r) interpolates between the values
f = ∓1 corresponding to a black hole or a white
hole in these coordinates.

An important issue regards the timescale of this process.
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Quasi black holes

Let us define a static and spherically symmetric quasi-black hole in a
rough way as a spacetime satisfying the following conditions:

I the geometry is Schwarzschild above a given radius R;
I the geometry for r ≤ R is not Schwarzschild;
I there are no event or trapping horizons.

There are many geometries satisfying such criteria but few is known
about:

I Dynamical processes for their formation;
I Stability of such objects.

Francesco Di Filippo ASTRO-TS 2019 25/06/2019 7 / 15



Outline

1 Possible alternatives

2 Parametrization

3 Example of an observational channel

Francesco Di Filippo ASTRO-TS 2019 25/06/2019 7 / 15



Phenomenological parameter

Relaxation time τ−: Time necessary to form the object;

Lifetime τ+: Timescale in which the object disappears completely;

Size R = rS (1 + ∆): Value of the radius of the object. It can be
useful to introduce µ = 1− rS

R . For very compact objects µ ≈ ∆.

Absorption coefficient κ: Fraction of incoming energy that is
(semi)permanently lost inside the region r ≤ R;

Elastic reflection coefficient Γ: Portion that is reflected at r ≥ R due
to elastic interactions;

Inelastic reflection coefficient Γ̃: Portion of energy that is temporarily
absorbed by the object and then re-emitted.

Tails ε(t, r): Modifications of the geometry that decay with radial
distance.
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Model τ− τ+ ∆ κ Γ ε(t, r)

Classical black hole ∼ 10M ∞ 0 1 0 0

Regular black hole ∼ 10M U 0 1 0 MD

Wormhole U ∞ > 0 MD 1− κ MD

Bouncing geometries MD MD 0? 1? 0? r? = O(rs)

Quasi-black hole MD/U ∞ > 0 MD/U MD/U MD

MD: Model Dependent U:Unknown.
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Accretion disk around Sgr A∗

Accretion rate Ṁ from the accretion disk to the object;

If the compact object is not a black hole you would expect an
outgoing flux Ė;

Negative observation of such flux can bu used to cast a constraint on
the phenomenological parameters;

It was claimed that even sub-Planckian value of ∆ were not
compatible with the observation [Broderick, Narayan (2006-2007); Narayan, McClintock(2008)].
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Accretion disk around Sgr A∗

The analysis was based on two hypotheses

Thermality: The emitted radiation follow a thermal distribution;

Steady state: A steady state between the compact object and the
accreation disk has been reached (Ė = Ṁ).

The emission of Sgr A* in the infrared is about 10−2 times this theoretical
estimate.

When do we expect such hypotheses to hold?
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Steady State

First of all, a steady state is not possible until the first ingoing radial
null geodesics can bounce back at the surface r = R,

Tbounce ≈ 4M |lnµ| µ = 1− rS
R
.

This is not in contradiction with the steady state assumption.

Strong lensing constitute a more important time delay for the steady
state [Cardoso, Pani (2017)].

Only the rays emitted inside a solid angle ∆Ω reaches infinity.

∆Ω = 2π

[
1 +

(
1− 3M

R

√
1 +

6M

R

)]
∼ 27

8
µ
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Steady state

Assuming κ = Γ = 0,

Ė

Ṁ
= 1−

(
1− ∆Ω

2π

)T/Tbounce

where T is the timescale over which the accretion rate is constant.
For Sgr A∗, T

TBounce
≈ 1015. So,

Ė

Ṁ
. 10−2 ⇐⇒ µ ≈ ∆ . 10−17
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Steady state
For Γ = 0 but κ 6= 0

Ė

Ṁ
=

(1− κ)∆Ω/2π

κ+ (1− κ)∆Ω/2π

[
1− (1− κ)(T/Tbounce)

(
1− ∆Ω

2π

)(T/Tbounce)
]
.

For κ� (Tbounce/T ),

Ė

Ṁ
=

(1− κ)∆Ω/2π

κ+ (1− κ)∆Ω/2π
< 10−2

This is a much weaker constraint. For instance, putting κ ≈ 10−5

µ < 10−7.

For completeness, if Γ 6= 0

lim
t→∞

Ė

Ṁ
=

(1− κ− Γ)(1− Γ)∆Ω/2π

κ+ (1− κ− Γ)∆Ω/2π
.

Francesco Di Filippo ASTRO-TS 2019 25/06/2019 14 / 15



Steady state
For Γ = 0 but κ 6= 0

Ė
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Conclusions

Model
Stars
(EM)

Accretion
(EM)

Shadows
(EM)

Bursts
(EM)

Coalescence
(GW)

Echoes
(GW)

Regular black hole ε(t, r) 7 ε(t, r) 7 7 7

Wormhole ε(t, r) 7 (Γ + κ = 1) ε(t, r) 7 τ−,Γ Γ, [µ]

Bouncing geometries ε(t, r) 7 ε(t, r) 3 τ− (short-lived)

Quasi-black hole ε(t, r) µ,Γ, κ ε(t, r) 7 τ−, µ,Γ Γ, [µ]

All the current observations are compatible with general relativity black holes;

Alternatives are far from being excluded;

A combined effort in different observational channel is needed.
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Thank you for your attention
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