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Inflation and CMB Polarization



Inflation and the CMB

Inflationary Paradigm

Vacuum quantum fluctuations of inflaton scalar field ⇒
primordial scalar and tensor (gravitational waves) perturbations

• Effect on the CMB (images from Kamionkowski & Caldwell 2000)
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Inflation and CMB Polarization

• CMB is polarized! ⇒ Thomson scattering at recombination
• Polarization state → Stokes parameters Q and U form Polarization
Tensor

• Helmholtz decompose it in:
• Curl component → B-modes → divergence-free
• Gradient component → E-modes → curl-free

Figure 1: From Planck website
3



The Quest for Primordial Gravitational Waves

• E-modes produced by scalar and tensor perturbations
• Primordial B-modes produced ONLY by tensor perturbations!
• IF Detected Primordial Gravitational waves will give:

• "Smoking gun" for inflation
• Identify energy scale of inflation for the simplest models! (single scalar

field slow-roll)
• What about more complex models? Beyond the standard model of
Early Universe? Lots of Physics to be understood in this primordial
signal!

Figure 2: From Planck results 2018
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Goals and Motivations

Our Goals and Motivations:

1. Examples of non-standard B-mode emission in the literature:
• massive gravity inflation (Domenech et al. 2017)
• open inflation(Yamauchi et al. 2011)
• topological defects/cosmic strings (Lizarraga et al. 2014)
• multifield inflation (Price et al. 2015)
• modified speed of cosmological gravitational waves (Raveri et al.

2014)
• rolling axion (Namba et al. 2016)
• SU(2)- axion model (Dimastrogiovanni et al. 2016)
• high-scale inflation (Baumann et al. 2016)
• ...

2. Establish the constraining power of future B-mode probes on the
shape of primordial tensor power spectrum

3. Sensitivity to features, deviations from power-law behaviour
4. We use Principal Component Analysis on Tensor Power Spectrum

for a model independent approach
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Power spectra, Parameters and
Observations



Standard Parametrization

Primordial Tensor Power Spectrum (Standard Power-Law)

PT (k) = AT

(
k
k0

)nT

• Tensor-to-scalar ratio

r = AT
As

• Actual observables are Temperature and Polarization angular
power spectra C`

• Tensor contribution

CXX ′

`,t ∝ PT (k)

X ,X ′ ∈ {T ,E ,B}
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Noise, Lensing and Foregrounds Contribution

CXX ′

` = CXX ′, prim
` + CXX ′, noise

` + λCXX ′, lens
` + CXX , fgs

`

• Total CXX ′

` contains:
1. Primordial spectrum CXX ′, prim

`

2. Instrumental noise after Component Separation CXX ′, noise
`

3. CMB lensing contribution λCXX ′, lens
` (λ delensing factor)

4. Foregrounds contribution CXX , fgs
`
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Foregrounds and Lensing

Figure 3: from Errard et al. 2016

• Lensing → dominant at intermediate – small scales
• Foregrounds → Dominant at large scales
• Dust + Synchrotron
• Parametric maximum-likelihood component separation
• Residual foregrounds in maps → residuals power spectrum C fgs

`

• FGBuster Code (Poletti & Errard)
8



Introduction to Principal
Component Analysis



Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Diagonalize Fisher matrix

F = STES

• PCA modes → eigenvectors of F (Rows of S)
• ei eigenvalues of F ordered from largest to smallest

E = diag(ei)

• PCA amplitudes → New uncorrelated parameters set m linear
combination of original parameters

• Compression of information in the first best measured modes

9



Principal Components of Tensor Power Spectrum

• PCA of scalar power spectrum performed before Planck mission

Our goal (Campeti, Poletti and Baccigalupi arXiv:1905.08200)
apply PCA to Primordial Tensor Power Spectrum and make realistic
forecasts for future CMB B-mode probes (LiteBIRD, SO, CMB-S4)

• Fisher Information Matrix for CMB

Fij = fsky

`max∑
`=2

2`+ 1
2 Tr

[
D`iC−1` Dj`C−1`

]

• Obtain Sa(k) → basis for tensor spectrum
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PCA modes for Model Testing: 2 Approaches

Fisher approach

• Projecting power spectrum model over PCA modes
• Uncertainties σFisher on ma from Fisher matrix

• Advantages → fast & easy
• Caveats → insensitive to physicality prior PT > 0

MCMC approach

• Constrain ma using simulated C` spectra (or data)
• Cosmological + Power spectrum parameters

{m1, ...,mn,As , ns , τ,Ωbh2,ΩDh2, θ}

• Impose PT > 0 in MCMC
• Advantages → impact of physicality priors (σFisher vs
σMCMC ), correlations

• Disadvantages → slow convergence
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Future Probes Specifications

LiteBIRD
• Satellite

• Timescale 2027

• 15 frequency bands
[40-402 GHz]

• Noise [36.1 - 4.7
µK-arcmin]

• Beams FWHM [69.2-9.7
arcmin]

• Sky fraction fsky = 60%

• 20% Delensing

• Multipole range
` ∼ 2− 1350

Simons Observatory (SO)
• Ground-based

• Timescale 2022

• 6 frequency bands
[27-280 GHz]

• Noise [35.3 - 2.7
µK-arcmin]

• Beams FWHM [91-9
arcmin]

• Sky fraction fsky = 10%

• 50% Delensing

• Multipole range
` ∼ 30− 4000

CMB-S4
• Ground-based

• Timescale 2027

• 9 frequency bands
[20-270 GHz]

• Noise [14 - 1.3
µK-arcmin]

• Beams FWHM [76.6-8.5
arcmin]

• Sky fraction fsky = 3%

• 90% Delensing

• Multipole range
` ∼ 30− 4000
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PCA Basis



PCA Basis: Problems
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Tensor PS need special care with respect to Scalar PS!

• For scalar spectrum PR → PCA describes small deviations around large,
well constrained amplitude As

• For tensor spectrum r not yet measured

• Generate our PCA basis with r = 0 → first PCA modes are effective r

• BUT Information in C`s with Tensors (r > 0) can be very different
from Information matrix that defined PCA basis!
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PCA Basis: Our Solution

• Tensors not known a priori but
number of modes retained is
fixed to N from onset!

• Test Stability! → Compute Fisher
information Fr for range of
possible r

• What fraction of Fr can our basis
capture? 1 3 5 7 9 11 13 15 17 19

Mode Number N

0.01

0.001

0.0

r

0.
90

0

0.
95

0
0.

97
0

0.
98

0

0.
99
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0.
99

3

0.90

0.92

0.94

0.96

0.98

• Study Information Fraction for range of r captured by first N modes of our basis:

I(r ,N) =
tr
(
ST

N Fr SN
)

tr (Fr )

• Choose N such that I high enough ∼ 98%
• e.g. LiteBIRD → set N = 8
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Application to LiteBIRD



Application to LiteBIRD: Fisher Matrix

0.
00

01

0.
00

1

0.
01 0.
1

Wavenumber k [Mpc−1]

0.0001

0.001

0.01

0.1

W
av

en
um

be
r

k
[M

pc
−

1 ]

0

10000

20000

30000

40000

• Fisher Matrix for LiteBIRD for r = 0

• Main features: recombination bump (k ≈ 6× 10−3Mpc−1) and
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Are Foregrounds important?

−0.4

0.0

0.4

S 1
(k
) σ1 = 0.0003 σ1 = 0.0014

No Foregrounds Foregrounds

−0.4

0.0

0.4

S 2
(k
) σ2 = 0.0008 σ2 = 0.002

−0.4

0.0

0.4

S 3
(k
) σ3 = 0.0015 σ3 = 0.005

−0.4

0.0

0.4

S 4
(k
) σ4 = 0.003 σ4 = 0.007

−0.4

0.0

0.4

S 5
(k
) σ5 = 0.005 σ5 = 0.01

−0.4

0.0

0.4

S 6
(k
) σ6 = 0.007 σ6 = 0.014

−0.4

0.0

0.4

S 7
(k
) σ7 = 0.009 σ7 = 0.019

10−4 10−3 10−2 10−1

Wavenumber k [Mpc−1]

−0.4

0.0

0.4

S 8
(k
) σ8 = 0.015 σ8 = 0.03

• Factor ∼ 5 on σ1 and ∼ 3 on σ2 due to foregrounds!
• Foregrounds change relative importance of reionization and

recombination peak

FOREGROUNDS CANNOT BE NEGLECTED!
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Limitations of the PCA Method
and MCMC Exploration



MCMC Exploration: r = 0.01
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• Fisher estimates for
PCA can be
inconsistent! →
insensitive to physicality
prior PT > 0

• Must have
σMCMC ≥ σFisher → true
without physicality prior

• With physicality prior
⇒ σMCMC < σFisher for
most modes!

PHYSICALITY PRIOR effect in marginal distributions→ asym-
metric, polygonal shapes, very different from Fisher
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MCMC Exploration: r = 0.001

• Physicality prior effect
even more evident
for smaller r
(r = 0.001)!
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CONCLUSION

Can always use PCA basis to model primordial tensor power spec-
trum BUT Fisher uncertainties are rarely accurate! Should be used
only for relative comparison!
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CONCLUSION
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Conclusions

• Applied PCA to Tensor primordial power spectrum
• Detect in B-modes deviations from scale-invariance in
model-independent way

• Constraints for LiteBIRD, SO and CMB-S4
• Foregrounds cannot be neglected!
• Our Basis (no tensors) → preferable to the Constant Mode Basis
• Fisher uncertainties can be affected by Physicality prior!
• Can be applied to any Early Universe scenario
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