

Principal Component Analysis of the Primordial Tensor Power Spectrum

arXiv:1905.08200

Paolo Campeti

In collaboration with Davide Poletti and Carlo Baccigalupi

SISSA - Scuola Internazionale Superiore di Studi Avanzati

Inflation and CMB Polarization

Inflation and the CMB

Inflationary Paradigm

Vacuum quantum fluctuations of inflaton scalar field \Rightarrow primordial scalar and tensor (gravitational waves) perturbations

Inflation and the CMB

Inflationary Paradigm

Vacuum quantum fluctuations of inflaton scalar field \Rightarrow primordial scalar and tensor (gravitational waves) perturbations

• Effect on the CMB (images from Kamionkowski & Caldwell 2000)

Inflation and the CMB

Inflationary Paradigm

Vacuum quantum fluctuations of inflaton scalar field \Rightarrow primordial scalar and tensor (gravitational waves) perturbations

• Effect on the CMB (images from Kamionkowski & Caldwell 2000)

Inflation and CMB Polarization

- CMB is polarized! \Rightarrow Thomson scattering at recombination
- Polarization state \rightarrow Stokes parameters Q and U form Polarization Tensor
- Helmholtz decompose it in:
 - $\bullet \ \ \textbf{Curl} \ \textbf{component} \to \ \textbf{B-modes} \to \ \textbf{divergence-free}$
 - Gradient component \rightarrow E-modes \rightarrow curl-free

Figure 1: From Planck website

The Quest for Primordial Gravitational Waves

- E-modes produced by scalar and tensor perturbations
- Primordial B-modes produced ONLY by tensor perturbations!
- IF Detected Primordial Gravitational waves will give:
 - "Smoking gun" for inflation
 - Identify energy scale of inflation for the simplest models! (single scalar field slow-roll)
- What about more complex models? Beyond the standard model of Early Universe? Lots of Physics to be understood in this primordial signal!

Figure 2: From Planck results 2018

Our Goals and Motivations:

1. Examples of non-standard B-mode emission in the literature:

- massive gravity inflation (Domenech et al. 2017)
- open inflation(Yamauchi et al. 2011)
- topological defects/cosmic strings (Lizarraga et al. 2014)
- multifield inflation (Price et al. 2015)
- modified speed of cosmological gravitational waves (Raveri et al. 2014)
- rolling axion (Namba et al. 2016)
- SU(2)- axion model (Dimastrogiovanni et al. 2016)
- high-scale inflation (Baumann et al. 2016)
- ...

Our Goals and Motivations:

1. Examples of non-standard B-mode emission in the literature:

- massive gravity inflation (Domenech et al. 2017)
- open inflation(Yamauchi et al. 2011)
- topological defects/cosmic strings (Lizarraga et al. 2014)
- multifield inflation (Price et al. 2015)
- modified speed of cosmological gravitational waves (Raveri et al. 2014)
- rolling axion (Namba et al. 2016)
- SU(2)- axion model (Dimastrogiovanni et al. 2016)
- high-scale inflation (Baumann et al. 2016)

2. Establish the constraining power of **future B-mode probes** on the **shape** of primordial tensor power spectrum

^{• ...}

Our Goals and Motivations:

1. Examples of non-standard B-mode emission in the literature:

- massive gravity inflation (Domenech et al. 2017)
- open inflation(Yamauchi et al. 2011)
- topological defects/cosmic strings (Lizarraga et al. 2014)
- multifield inflation (Price et al. 2015)
- modified speed of cosmological gravitational waves (Raveri et al. 2014)
- rolling axion (Namba et al. 2016)
- SU(2)- axion model (Dimastrogiovanni et al. 2016)
- high-scale inflation (Baumann et al. 2016)
- ...
- 2. Establish the constraining power of **future B-mode probes** on the **shape** of primordial tensor power spectrum
- 3. Sensitivity to features, deviations from power-law behaviour

Our Goals and Motivations:

1. Examples of non-standard B-mode emission in the literature:

- massive gravity inflation (Domenech et al. 2017)
- open inflation(Yamauchi et al. 2011)
- topological defects/cosmic strings (Lizarraga et al. 2014)
- multifield inflation (Price et al. 2015)
- modified speed of cosmological gravitational waves (Raveri et al. 2014)
- rolling axion (Namba et al. 2016)
- SU(2)- axion model (Dimastrogiovanni et al. 2016)
- high-scale inflation (Baumann et al. 2016)
- ...
- 2. Establish the constraining power of **future B-mode probes** on the **shape** of primordial tensor power spectrum
- 3. Sensitivity to features, deviations from power-law behaviour
- 4. We use **Principal Component Analysis** on Tensor Power Spectrum for a **model independent** approach

Power spectra, Parameters and Observations

Primordial Tensor Power Spectrum (Standard Power-Law)

$$\mathcal{P}_{\mathcal{T}}(k) = A_{\mathcal{T}}\left(\frac{k}{k_0}\right)^n$$

Primordial Tensor Power Spectrum (Standard Power-Law)

$$\mathcal{P}_{T}(k) = A_{T} \left(\frac{k}{k_{0}}\right)^{n}$$

• Tensor-to-scalar ratio

$$r = \frac{A_T}{A_s}$$

Primordial Tensor Power Spectrum (Standard Power-Law)

$$\mathcal{P}_{\mathcal{T}}(k) = A_{\mathcal{T}}\left(\frac{k}{k_0}\right)^n$$

• Tensor-to-scalar ratio

$$r = \frac{A_T}{A_s}$$

 Actual observables are Temperature and Polarization angular power spectra C_ℓ

Primordial Tensor Power Spectrum (Standard Power-Law)

$$\mathcal{P}_{\mathcal{T}}(k) = A_{\mathcal{T}}\left(\frac{k}{k_0}\right)^n$$

• Tensor-to-scalar ratio

$$r = \frac{A_T}{A_s}$$

- Actual observables are Temperature and Polarization angular power spectra C_{ℓ}
- Tensor contribution

$$\mathcal{C}_{\ell,t}^{XX'} \propto \mathcal{P}_{T}\left(k
ight)$$

 $X, X' \in \{T, E, B\}$

Noise, Lensing and Foregrounds Contribution

$$C_{\ell}^{XX'} = C_{\ell}^{XX', \text{ prim}} + C_{\ell}^{XX', \text{ noise}} + \lambda C_{\ell}^{XX', \text{ lens}} + C_{\ell}^{XX, \text{ fgs}}$$

- Total $C_{\ell}^{XX'}$ contains:
 - 1. Primordial spectrum $C_{\ell}^{XX', prim}$
 - 2. Instrumental noise after Component Separation $C_{\rho}^{XX', \text{ noise}}$
 - 3. CMB lensing contribution $\lambda C_{\ell}^{XX', lens}$ (λ delensing factor)
 - 4. Foregrounds contribution $C_{\ell}^{XX, fgs}$

Foregrounds and Lensing

Figure 3: from Errard et al. 2016

- Lensing \rightarrow dominant at intermediate small scales
- $\bullet~\mbox{Foregrounds} \rightarrow \mbox{Dominant}$ at large scales
- Dust + Synchrotron
- Parametric maximum-likelihood component separation
- Residual foregrounds in maps \rightarrow residuals power spectrum $C_{\ell}^{\rm fgs}$
- FGBuster Code (Poletti & Errard)

Introduction to Principal Component Analysis

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Diagonalize Fisher matrix

$$F = S^T E S$$

- PCA modes → eigenvectors of F (Rows of S)
- e_i eigenvalues of **F** ordered from largest to smallest

$$\boldsymbol{E} = diag(e_i)$$

- PCA amplitudes → New uncorrelated parameters set m linear combination of original parameters
- Compression of information in the first best measured modes

Principal Components of Tensor Power Spectrum

• PCA of scalar power spectrum performed before Planck mission

Principal Components of Tensor Power Spectrum

• PCA of scalar power spectrum performed before Planck mission

Our goal (Campeti, Poletti and Baccigalupi arXiv:1905.08200) apply **PCA** to **Primordial Tensor Power Spectrum** and make realistic forecasts for future CMB **B-mode** probes (LiteBIRD, SO, CMB-S4) • PCA of scalar power spectrum performed before Planck mission

Our goal (Campeti, Poletti and Baccigalupi arXiv:1905.08200) apply PCA to Primordial Tensor Power Spectrum and make realistic forecasts for future CMB B-mode probes (LiteBIRD, SO, CMB-S4)

• Fisher Information Matrix for CMB

$$F_{ij} = f_{sky} \sum_{\ell=2}^{\ell_{max}} \frac{2\ell+1}{2} \operatorname{Tr} \left[\mathbf{D}_{\ell i} \mathbf{C}_{\ell}^{-1} \mathbf{D}_{j \ell} \mathbf{C}_{\ell}^{-1} \right]$$

• PCA of scalar power spectrum performed before Planck mission

Our goal (Campeti, Poletti and Baccigalupi arXiv:1905.08200) apply PCA to Primordial Tensor Power Spectrum and make realistic forecasts for future CMB B-mode probes (LiteBIRD, SO, CMB-S4)

• Fisher Information Matrix for CMB

$$F_{ij} = f_{sky} \sum_{\ell=2}^{\ell_{\max}} \frac{2\ell+1}{2} \operatorname{Tr} \left[\mathbf{D}_{\ell i} \mathbf{C}_{\ell}^{-1} \mathbf{D}_{j \ell} \mathbf{C}_{\ell}^{-1} \right]$$

• Obtain $\mathcal{S}_a(k)
ightarrow \mathbf{basis}$ for tensor spectrum

PCA modes for Model Testing: 2 Approaches

Fisher approach

- Projecting power spectrum model over PCA modes
- Uncertainties σ_{Fisher} on m_a from Fisher matrix
 - Advantages \rightarrow fast & easy
 - Caveats \rightarrow insensitive to physicality prior $\textbf{\textit{P}}_{T}>0$

PCA modes for Model Testing: 2 Approaches

Fisher approach

- Projecting power spectrum model over PCA modes
- Uncertainties σ_{Fisher} on m_a from Fisher matrix
 - Advantages \rightarrow fast & easy
 - Caveats \rightarrow insensitive to physicality prior $\textbf{\textit{P}}_{T}>0$

MCMC approach

- Constrain m_a using simulated C_ℓ spectra (or data)
 - Cosmological + Power spectrum parameters

$$\{m_1, ..., m_n, A_s, n_s, \tau, \Omega_b h^2, \Omega_D h^2, \theta\}$$

- Impose $P_T > 0$ in MCMC
- Advantages \rightarrow impact of physicality priors (σ_{Fisher} vs σ_{MCMC}), correlations
- **Disadvantages** \rightarrow slow convergence

- Satellite
- Timescale 2027
- 15 frequency bands [40-402 GHz]
- Noise [36.1 4.7 μK-arcmin]
- Beams FWHM [69.2-9.7 arcmin]
- Sky fraction $f_{sky} = 60\%$
- 20% Delensing
- Multipole range $\ell \sim 2 1350$

LiteBIRD

- Satellite
- Timescale 2027
- 15 frequency bands [40-402 GHz]
- Noise [36.1 4.7 μK-arcmin]
- Beams FWHM [69.2-9.7 arcmin]
- Sky fraction $f_{sky} = 60\%$
- 20% Delensing
- Multipole range $\ell \sim 2 1350$

Simons Observatory (SO)

- Ground-based
- Timescale 2022
- 6 frequency bands [27-280 GHz]
- Noise [35.3 2.7 μK-arcmin]
- Beams FWHM [91-9 arcmin]
- Sky fraction $f_{sky} = 10\%$
- 50% Delensing
- Multipole range
 ℓ ~ 30 − 4000

LiteBIRD

- Satellite
- Timescale 2027
- 15 frequency bands [40-402 GHz]
- Noise [36.1 4.7 μK-arcmin]
- Beams FWHM [69.2-9.7 arcmin]
- Sky fraction $f_{sky} = 60\%$
- 20% Delensing
- Multipole range $\ell \sim 2 1350$

Simons Observatory (SO)

- Ground-based
- Timescale 2022
- 6 frequency bands [27-280 GHz]
- Noise [35.3 2.7 μK-arcmin]
- Beams FWHM [91-9 arcmin]
- Sky fraction $f_{sky} = 10\%$
- 50% Delensing
- Multipole range $\ell \sim 30 4000$

CMB-S4

- Ground-based
- Timescale 2027
- 9 frequency bands [20-270 GHz]
- Noise [14 1.3 μK-arcmin]
- Beams FWHM [76.6-8.5 arcmin]
- Sky fraction f_{sky} = 3%
- 90% Delensing
- Multipole range $\ell \sim 30 4000$

Tensor PS need special care with respect to Scalar PS!

• For scalar spectrum $\mathcal{P}_{\mathcal{R}} \to \mathsf{PCA}$ describes small deviations around large, well constrained amplitude A_s

- For scalar spectrum P_R → PCA describes small deviations around large, well constrained amplitude A_s
- For tensor spectrum *r* not yet measured

- For scalar spectrum P_R → PCA describes small deviations around large, well constrained amplitude A_s
- For tensor spectrum *r* not yet measured
- Generate our **PCA basis** with $r = 0 \rightarrow$ first PCA modes are **effective** r

- For scalar spectrum P_R → PCA describes small deviations around large, well constrained amplitude A_s
- For tensor spectrum *r* not yet measured
- Generate our **PCA basis** with $r = 0 \rightarrow$ first PCA modes are **effective** r
- BUT Information in C_ℓs with Tensors (r > 0) can be very different from Information matrix that defined PCA basis!

• Tensors not known a priori but number of modes retained is fixed to N from onset!

- Tensors not known a priori but number of modes retained is fixed to N from onset!
- Test Stability! → Compute Fisher information *F_r* for range of possible *r*

- Tensors not known a priori but number of modes retained is fixed to N from onset!
- Test Stability! → Compute Fisher information *F_r* for range of possible *r*
- What fraction of *F_r* can our basis capture?

- Tensors not known a priori but number of modes retained is fixed to N from onset!
- Test Stability! → Compute Fisher information F_r for range of possible r
- What fraction of *F_r* can our basis capture?

• Study Information Fraction for range of r captured by first N modes of our basis:

$$I(r, N) = \frac{tr\left(\mathcal{S}_{N}^{T} F_{r} \mathcal{S}_{N}\right)}{tr\left(F_{r}\right)}$$

- Tensors not known a priori but number of modes retained is fixed to N from onset!
- Test Stability! → Compute Fisher information *F_r* for range of possible *r*
- What fraction of *F_r* can our basis capture?

• Study Information Fraction for range of r captured by first N modes of our basis:

$$I(r, N) = \frac{tr\left(\mathcal{S}_{N}^{T} F_{r} \mathcal{S}_{N}\right)}{tr\left(F_{r}\right)}$$

• Choose N such that / high enough $\sim 98\%$

- Tensors not known a priori but number of modes retained is fixed to N from onset!
- Test Stability! → Compute Fisher information *F_r* for range of possible *r*
- What fraction of *F_r* can our basis capture?

• Study Information Fraction for range of r captured by first N modes of our basis:

$$I(r, N) = \frac{tr\left(\mathcal{S}_{N}^{T} F_{r} \mathcal{S}_{N}\right)}{tr\left(F_{r}\right)}$$

- Choose N such that / high enough $\sim 98\%$
- e.g. LiteBIRD \rightarrow set N = 8

Application to LiteBIRD

Application to LiteBIRD: Fisher Matrix

• Fisher Matrix for LiteBIRD for r = 0

Application to LiteBIRD: Fisher Matrix

- Fisher Matrix for LiteBIRD for r = 0
- Main features: recombination bump $(k \approx 6 \times 10^{-3} \text{Mpc}^{-1})$ and reionization bump $(k \approx 6 \times 10^{-4} \text{Mpc}^{-1})$

Application to LiteBIRD: Fisher Matrix

- Fisher Matrix for LiteBIRD for r = 0
- Main features: recombination bump ($k \approx 6 \times 10^{-3} Mpc^{-1}$) and reionization bump ($k \approx 6 \times 10^{-4} Mpc^{-1}$)
- Most information for r = 0 comes from reionization peak

Are Foregrounds important?

- Factor ~ 5 on σ_1 and ~ 3 on σ_2 due to foregrounds!
- Foregrounds change relative importance of reionization and recombination peak

Are Foregrounds important?

- Factor ~ 5 on σ_1 and ~ 3 on σ_2 due to foregrounds!
- Foregrounds change relative importance of reionization and recombination peak

Limitations of the PCA Method and MCMC Exploration

• Fisher estimates for PCA can be inconsistent! \rightarrow insensitive to physicality prior $\mathcal{P}_T > 0$

- Fisher estimates for PCA can be inconsistent! \rightarrow insensitive to physicality prior $\mathcal{P}_T > 0$
- Must have $\sigma_{MCMC} \ge \sigma_{Fisher} \rightarrow true$ without physicality prior

- Fisher estimates for PCA can be inconsistent! \rightarrow insensitive to physicality prior $\mathcal{P}_T > 0$
- Must have $\sigma_{\rm MCMC} \geq \sigma_{\rm Fisher} \rightarrow {\rm true} \\ {\rm without \ physicality \ prior}$
- With physicality prior $\Rightarrow \sigma_{MCMC} < \sigma_{Fisher}$ for most modes!

Physicality prior effect
 even more evident
 for smaller r
 (r = 0.001)!

• Physicality prior effect even more evident

CONCLUSION

Can always use PCA basis to model primordial tensor power spectrum **BUT** Fisher uncertainties are rarely accurate! Should be used only for relative comparison!

- Applied PCA to Tensor primordial power spectrum
- Detect in B-modes deviations from scale-invariance in model-independent way
- Constraints for LiteBIRD, SO and CMB-S4
- Foregrounds cannot be neglected!
- Our Basis (no tensors) → preferable to the Constant Mode Basis
- Fisher uncertainties can be affected by Physicality prior!
- Can be applied to any Early Universe scenario

Thanks For Your Attention