

ASTRO@TS - 25 JUNE 2019 - SISSA

CONSTRAINTS ON EARLY DARK ENERGY

Hasti Khoraminezhad

Supervisors: Matteo Viel and Carlo Baccigalupi

THE ENERGY BUDGET OF THE UNIVERSE

Atoms 4.6%

TODAY

ENERGY DENSITIES IN THE UNIVERSE

Georg Robbers (2008)

EARLY DARK ENERGY

ONE MODEL OF EARLY DARK ENERGY $\Omega_{DE}(a) = \frac{\Omega_{DE}^{0} - \Omega_{eDE}(1 - a^{-3w_{0}})}{\Omega_{DE}^{0} + \Omega_{m}^{0}a^{3w_{0}}} + \Omega_{eDE}(1 - a^{-3w_{0}})$ Michael Doran

PERTURBATIONS – DARK ENERGY STRESSED PARAMETRIZATION

synchronous gauge - energy momentum conservation

The trace of the synchronous metric perturbation

$$\frac{\dot{w}}{(1+w)(\dot{a}/a)}\bigg)\Bigg]\frac{\theta}{k^2} - \frac{\dot{h}}{2} - 3\frac{\dot{a}}{a}(c_{eff}^2 - w)\frac{\delta}{1+w}$$

$$\frac{8c_{vis}^2}{1+w} \left[\theta + \frac{\dot{h}}{2} + 3\dot{\eta} \right]$$

Ma and Bertschinger (1995)

arXiv:astro-ph/9506072

EFFECTS ON CMB

Effect of the effective sound speed on the CMB spectrum wCDM

Effect of the viscose sound speed on the CMB spectrum wCDM

 $\frac{\dot{\delta}}{1+w} = -\left|k^2 + 9\left(\frac{\dot{a}}{a}\right)\right|$

EFFECTS ON CMB $\dot{\theta} = -\frac{\dot{a}}{a}(1-3c_{eff}^2)\theta + \frac{\delta}{1+w}c_{eff}^2k^2 - k^2\epsilon$

$$\left. \right)^{2} \left(\underbrace{c_{eff}^{2}}_{eff} - w + \frac{\dot{w}}{3(1+w)(\dot{a}/a)} \right) \right] \frac{\theta}{k^{2}} - \frac{\dot{h}}{2} - 3\frac{\dot{a}}{a} \underbrace{(c_{eff}^{2} - w)}_{1+w} \frac{\delta}{1+w}$$

$$\dot{\sigma} = -3\frac{\dot{a}}{a} \left[1 - \frac{\dot{w}}{3w(1+w)(\dot{a}/a)} \right] \sigma + \frac{8c_{vis}^2}{3(1+w)} \left[\theta + \frac{\dot{h}}{2} + 3\dot{\eta} \right]$$

EFFECTS ON CMB $\dot{\theta} = -\frac{\dot{a}}{a}(1-3c_{eff}^2)\theta + \frac{\delta}{1+u}e_{eff}^2k^2 - k^2\sigma$

$$\frac{\dot{\delta}}{1+w} = -\left[k^2 + 9\left(\frac{\dot{a}}{a}\right)^2 \left(c_{eff}^2 - w + \frac{\dot{w}}{3(1+w)(\dot{a}/a)}\right)\right] \frac{\theta}{k^2} - \frac{\dot{h}}{2} - 3\frac{\dot{a}}{a}(c_{eff}^2 - w)\frac{\delta}{1+w}$$

$$\dot{\sigma} = -3\frac{\dot{a}}{a} \left[1 - \frac{\dot{w}}{3w(1+w)(\dot{a}/a)} \right] \sigma + \frac{8c_{vis}^2}{3(1+w)} \left[\theta + \frac{\dot{h}}{2} + 3\dot{\eta} \right]$$

EFFECTS OF SOUND SPEED ON CMB

1	0

EFFECTS OF VISCOSITY ON CMB

EFFECTS OF VISCOSITY ON CMB

ISW COMPONENT OF THE TEMPERATURE CMB ANISOTROPIES

CMB LENSING

EFFECTS ON MATTER POWER SPECTRUM

CONSTRAINTS ON EARLY DARK ENERGY

Planck					
Params	bestfits	mean	2σ lower limit	2σ upper limit	
Ω_{eDE}	0.000211574	0.00291269	0	0.00840509	
w_0	-0.898016	-0.893396	-1	-0.716352	
au	0.0660344	0.0839135	0.0507459	0.117357	
Σm_{ν}	0.0595693	0.202833	0.056	0.502911	

Planck+BAO+SNe+H0

Params	bestfits	mean	2σ lower limit	2σ upper limit
Ω_{eDE}	0.00160501	0.00192165	0	0.00574627
w_0	-0.992979	-0.980116	-1	-0.946334
τ	0.0930969	0.0888891	0.055531	0.120996
Σm_{ν}	0.073089	0.0931285	0.056	0.158235

Planck+BAO+SNe+H0+Lensing

Params	bestfits	mean	2σ lower limit	2σ upper limit
Ω_{eDE}	0.00350455	0.00251735	0	0.00782563
w_0	-0.977624	-0.979581	-1	-0.946519
τ	0.0694712	0.0796277	0.0531697	0.107371
Σm_{ν}	0.0847083	0.0968175	0.056	0.166335

Planck: Planck TT, TE, EE + low TEB

$H_0 = (70.6 \pm 3.3) \ km s^{-1} Mpc^{-1}$

ARE τ or Σm_{ν} Affected by Ede ?

Parameters	mean value	standard deviation	2σ lower limit	2σ upper limit
Ω_{eDE}	0.1249504E - 02	0.1176688E - 02	0.0000000E + 00	0.3598433E - 02
w_0	-0.9797396E + 00	0.1678665E - 01	-0.1000000E + 01	-0.9464207E + 00
n_s	0.9693165E + 00	0.4160295E - 02	0.9612642E + 00	0.9775096E + 00
H_0	0.6707394E + 02	0.5978085E + 00	0.6586974E + 02	0.6824105E + 02
σ_8	0.8162684E + 00	0.1498472E - 01	0.7862401E + 00	0.8450923E + 00
τ	0.8862058E - 01	0.1665088E - 01	0.5558448E - 01	0.1204848E + 00
r	0.4005223E - 01	0.3364827E - 01	0.0000000E + 00	0.1068262E + 00
Σm_{ν}	0.9284021E - 01	0.3270721E - 01	0.560000E - 01	0.1586265E + 00

EDE

Parameters	mean value	standard deviation	2σ lower limit	2σ upper limit
w_0	-0.9791431E + 00	0.1742040E - 01	-0.100000E + 01	-0.9448148E + 00
n_s	0.9691575E + 00	0.4222589E - 02	0.9609800E + 00	0.9774636E + 00
H_0	0.6707328E + 02	0.6096638E + 00	0.6584324E + 02	0.6828242E + 02
σ_8	0.8182037E + 00	0.1534540E - 01	0.7868118E + 00	0.8468136E + 00
τ	0.8733086E - 01	0.1628956E - 01	0.5530816E - 01	0.1184659E + 00
r	0.4128439E - 01	0.3568493E - 01	0.0000000E + 00	0.1118276E + 00
Σm_{ν}	0.9802247E - 01	0.3812329E - 01	0.560000E - 01	0.1752705E + 00

wCDM

Planck2015 (Planck TT, TE, EE + low TEB) +BAO+JLA+H0prior

ADDING QUASARS

Planck+BAO+SNe+QSOs+H0

Params	bestfits	mean	2σ lower limit	2σ upper limit
Ω_{eDE}	0.00152123	0.00200005	0	0.00604808
w_0	-0.996865	-0.981194	-1	-0.949753
au	0.0822686	0.0893285	0.0579568	0.120382
Σm_{ν}	0.0709065	0.0908281	0.056	0.149906

Planck+BAO+SNe+H0

Params	bestfits	mean	2σ lower limit	2σ upper limit
Ω_{eDE}	0.00160501	0.00192165	0	0.00574627
w_0	-0.992979	-0.980116	-1	-0.946334
au	0.0930969	0.0888891	0.055531	0.120996
Σm_{ν}	0.073089	0.0931285	0.056	0.158235

 $log(L_X) = \beta + \gamma log(L_{UV})$ $ln(LF) = \sum_{i=1}^{N} \left\{ \frac{[log(F_X)_i - \Phi(F_{UV}, D_L)_i]}{s_i^2} + ln(s_i^2) \right\}$

ADDING BAO DR14 (QSO,LYA) + QSO

Planck+Lensing+BAO+SNe(JLA)+H0

Params	bestfits	mean	2σ lower limit	2σ upper limit
Ω_{eDE}	0.00350455	0.00240698	0	0.00767044
w_0	-0.977624	-0.979299	-1	-0.945634
au	0.0694712	0.0795518	0.0530791	0.107391
Σm_{ν}	0.0847083	0.0973397	0.056	0.166991

Planck+Lensing+BAO+SNe(JLA)+H0+BAO(qso,Lya)+QSOs

Params	bestfits	mean	2σ lower limit	2σ upper limit
Ω_{eDE}	0.000466991	0.00227519	0	0.00678934
w_0	-0.992498	-0.980544	-1	-0.947582
τ	0.0687274	0.0806523	0.0539031	0.108913
Σm_{ν}	0.0584204	0.101019	0.056	0.177641

 Ω_{eDE}

 W_0

 σ_8

CONCLUSION

- constraints on early dark energy (EDE) -> CMB, BAO, SNe and QSOs datasets (with CosmoMC code) Including the possibility of clustering through c_{eff}^2 and c_{vis}^2 (implemented in CAMB code) Perturbations in a DE component -> affect the CMB -> only on large scales -> ISW effect

- The net of increasing c_{eff}^2 and $c_{vis}^2 \rightarrow making the ISW power higher$
- Degeneracies between -> (r and Ω_{eDE}), (r and w_0), (Ω_{eDE} and w_0)
- Adding BAO Lya-qso dataset -> improving constraints on Ω_{eDE}
- QSOs do not seem to constrain much the EDE parameters but they constrain other models in which Ω_k is free
- The effect of EDE model on τ and $\Sigma m_{\nu} \rightarrow No$ strong degeneracies

THANK YOU

